Update hf_mamba_classification.py
Browse files- hf_mamba_classification.py +29 -3
hf_mamba_classification.py
CHANGED
|
@@ -1,6 +1,6 @@
|
|
| 1 |
import torch
|
| 2 |
from torch import nn
|
| 3 |
-
from torch.nn import CrossEntropyLoss
|
| 4 |
from transformers.models.mamba.modeling_mamba import (
|
| 5 |
MambaPreTrainedModel,
|
| 6 |
MambaModel,
|
|
@@ -44,7 +44,9 @@ class MambaSequenceClassifierOutput(ModelOutput):
|
|
| 44 |
|
| 45 |
loss: Optional[torch.FloatTensor] = None
|
| 46 |
logits: torch.FloatTensor = None
|
|
|
|
| 47 |
cache_params: Optional[List[torch.FloatTensor]] = None
|
|
|
|
| 48 |
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 49 |
|
| 50 |
|
|
@@ -149,8 +151,32 @@ class MambaForSequenceClassification(MambaPreTrainedModel):
|
|
| 149 |
torch.arange(batch_size, device=logits.device), sequence_lengths
|
| 150 |
]
|
| 151 |
|
| 152 |
-
|
| 153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
|
| 155 |
if not return_dict:
|
| 156 |
output = (pooled_logits,) + mamba_outputs[1:]
|
|
|
|
| 1 |
import torch
|
| 2 |
from torch import nn
|
| 3 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
| 4 |
from transformers.models.mamba.modeling_mamba import (
|
| 5 |
MambaPreTrainedModel,
|
| 6 |
MambaModel,
|
|
|
|
| 44 |
|
| 45 |
loss: Optional[torch.FloatTensor] = None
|
| 46 |
logits: torch.FloatTensor = None
|
| 47 |
+
# cache_params: Optional[MambaCache] = None,
|
| 48 |
cache_params: Optional[List[torch.FloatTensor]] = None
|
| 49 |
+
# cache_params: Optional[Tuple[Tuple[torch.FloatTensor]]] = None
|
| 50 |
hidden_states: Optional[Tuple[torch.FloatTensor, ...]] = None
|
| 51 |
|
| 52 |
|
|
|
|
| 151 |
torch.arange(batch_size, device=logits.device), sequence_lengths
|
| 152 |
]
|
| 153 |
|
| 154 |
+
loss = None
|
| 155 |
+
if labels is not None:
|
| 156 |
+
if self.config.problem_type is None:
|
| 157 |
+
if self.num_labels == 1:
|
| 158 |
+
self.config.problem_type = "regression"
|
| 159 |
+
elif self.num_labels > 1 and (
|
| 160 |
+
labels.dtype == torch.long or labels.dtype == torch.int
|
| 161 |
+
):
|
| 162 |
+
self.config.problem_type = "single_label_classification"
|
| 163 |
+
else:
|
| 164 |
+
self.config.problem_type = "multi_label_classification"
|
| 165 |
+
|
| 166 |
+
if self.config.problem_type == "regression":
|
| 167 |
+
loss_fct = MSELoss()
|
| 168 |
+
if self.num_labels == 1:
|
| 169 |
+
loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
|
| 170 |
+
else:
|
| 171 |
+
loss = loss_fct(pooled_logits, labels)
|
| 172 |
+
elif self.config.problem_type == "single_label_classification":
|
| 173 |
+
loss_fct = CrossEntropyLoss()
|
| 174 |
+
loss = loss_fct(
|
| 175 |
+
pooled_logits.view(-1, self.num_labels), labels.view(-1)
|
| 176 |
+
)
|
| 177 |
+
elif self.config.problem_type == "multi_label_classification":
|
| 178 |
+
loss_fct = BCEWithLogitsLoss()
|
| 179 |
+
loss = loss_fct(pooled_logits, labels)
|
| 180 |
|
| 181 |
if not return_dict:
|
| 182 |
output = (pooled_logits,) + mamba_outputs[1:]
|