End of training
Browse files
README.md
CHANGED
|
@@ -15,13 +15,13 @@ should probably proofread and complete it, then remove this comment. -->
|
|
| 15 |
|
| 16 |
This model is a fine-tuned version of [dathi103/gbert-job](https://huggingface.co/dathi103/gbert-job) on an unknown dataset.
|
| 17 |
It achieves the following results on the evaluation set:
|
| 18 |
-
- Loss: 0.
|
| 19 |
-
- Hard: {'precision': 0.
|
| 20 |
-
- Soft: {'precision': 0.
|
| 21 |
-
- Overall Precision: 0.
|
| 22 |
-
- Overall Recall: 0.
|
| 23 |
-
- Overall F1: 0.
|
| 24 |
-
- Overall Accuracy: 0.
|
| 25 |
|
| 26 |
## Model description
|
| 27 |
|
|
@@ -52,11 +52,11 @@ The following hyperparameters were used during training:
|
|
| 52 |
|
| 53 |
| Training Loss | Epoch | Step | Validation Loss | Hard | Soft | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
| 54 |
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
| 55 |
-
| No log | 1.0 | 178 | 0.
|
| 56 |
-
| No log | 2.0 | 356 | 0.
|
| 57 |
-
| 0.
|
| 58 |
-
| 0.
|
| 59 |
-
| 0.
|
| 60 |
|
| 61 |
|
| 62 |
### Framework versions
|
|
|
|
| 15 |
|
| 16 |
This model is a fine-tuned version of [dathi103/gbert-job](https://huggingface.co/dathi103/gbert-job) on an unknown dataset.
|
| 17 |
It achieves the following results on the evaluation set:
|
| 18 |
+
- Loss: 0.1135
|
| 19 |
+
- Hard: {'precision': 0.7519685039370079, 'recall': 0.8377192982456141, 'f1': 0.7925311203319502, 'number': 456}
|
| 20 |
+
- Soft: {'precision': 0.6739130434782609, 'recall': 0.7560975609756098, 'f1': 0.7126436781609194, 'number': 82}
|
| 21 |
+
- Overall Precision: 0.74
|
| 22 |
+
- Overall Recall: 0.8253
|
| 23 |
+
- Overall F1: 0.7803
|
| 24 |
+
- Overall Accuracy: 0.9647
|
| 25 |
|
| 26 |
## Model description
|
| 27 |
|
|
|
|
| 52 |
|
| 53 |
| Training Loss | Epoch | Step | Validation Loss | Hard | Soft | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
| 54 |
|:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
| 55 |
+
| No log | 1.0 | 178 | 0.1201 | {'precision': 0.6016949152542372, 'recall': 0.7785087719298246, 'f1': 0.678776290630975, 'number': 456} | {'precision': 0.5894736842105263, 'recall': 0.6829268292682927, 'f1': 0.632768361581921, 'number': 82} | 0.6 | 0.7639 | 0.6721 | 0.9508 |
|
| 56 |
+
| No log | 2.0 | 356 | 0.1010 | {'precision': 0.6853281853281853, 'recall': 0.7785087719298246, 'f1': 0.728952772073922, 'number': 456} | {'precision': 0.632183908045977, 'recall': 0.6707317073170732, 'f1': 0.6508875739644969, 'number': 82} | 0.6777 | 0.7621 | 0.7174 | 0.9603 |
|
| 57 |
+
| 0.1417 | 3.0 | 534 | 0.1026 | {'precision': 0.7030075187969925, 'recall': 0.8201754385964912, 'f1': 0.757085020242915, 'number': 456} | {'precision': 0.65625, 'recall': 0.7682926829268293, 'f1': 0.7078651685393258, 'number': 82} | 0.6959 | 0.8123 | 0.7496 | 0.9598 |
|
| 58 |
+
| 0.1417 | 4.0 | 712 | 0.1122 | {'precision': 0.7311411992263056, 'recall': 0.8289473684210527, 'f1': 0.776978417266187, 'number': 456} | {'precision': 0.6464646464646465, 'recall': 0.7804878048780488, 'f1': 0.7071823204419891, 'number': 82} | 0.7175 | 0.8216 | 0.7660 | 0.9616 |
|
| 59 |
+
| 0.1417 | 5.0 | 890 | 0.1135 | {'precision': 0.7519685039370079, 'recall': 0.8377192982456141, 'f1': 0.7925311203319502, 'number': 456} | {'precision': 0.6739130434782609, 'recall': 0.7560975609756098, 'f1': 0.7126436781609194, 'number': 82} | 0.74 | 0.8253 | 0.7803 | 0.9647 |
|
| 60 |
|
| 61 |
|
| 62 |
### Framework versions
|