dathi103 commited on
Commit
cbd08fc
·
verified ·
1 Parent(s): 2334e77

End of training

Browse files
Files changed (1) hide show
  1. README.md +12 -12
README.md CHANGED
@@ -15,13 +15,13 @@ should probably proofread and complete it, then remove this comment. -->
15
 
16
  This model is a fine-tuned version of [dathi103/gbert-job](https://huggingface.co/dathi103/gbert-job) on an unknown dataset.
17
  It achieves the following results on the evaluation set:
18
- - Loss: 0.1383
19
- - Hard: {'precision': 0.6893203883495146, 'recall': 0.7802197802197802, 'f1': 0.7319587628865979, 'number': 364}
20
- - Soft: {'precision': 0.6329113924050633, 'recall': 0.7575757575757576, 'f1': 0.6896551724137931, 'number': 66}
21
- - Overall Precision: 0.6802
22
- - Overall Recall: 0.7767
23
- - Overall F1: 0.7253
24
- - Overall Accuracy: 0.9570
25
 
26
  ## Model description
27
 
@@ -52,11 +52,11 @@ The following hyperparameters were used during training:
52
 
53
  | Training Loss | Epoch | Step | Validation Loss | Hard | Soft | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
54
  |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
55
- | No log | 1.0 | 178 | 0.1186 | {'precision': 0.5478260869565217, 'recall': 0.6923076923076923, 'f1': 0.6116504854368932, 'number': 364} | {'precision': 0.5070422535211268, 'recall': 0.5454545454545454, 'f1': 0.5255474452554744, 'number': 66} | 0.5424 | 0.6698 | 0.5994 | 0.9511 |
56
- | No log | 2.0 | 356 | 0.1073 | {'precision': 0.6247030878859857, 'recall': 0.7225274725274725, 'f1': 0.6700636942675159, 'number': 364} | {'precision': 0.573170731707317, 'recall': 0.7121212121212122, 'f1': 0.6351351351351352, 'number': 66} | 0.6163 | 0.7209 | 0.6645 | 0.9572 |
57
- | 0.1381 | 3.0 | 534 | 0.1310 | {'precision': 0.6836734693877551, 'recall': 0.7362637362637363, 'f1': 0.7089947089947091, 'number': 364} | {'precision': 0.5632183908045977, 'recall': 0.7424242424242424, 'f1': 0.6405228758169934, 'number': 66} | 0.6618 | 0.7372 | 0.6975 | 0.9574 |
58
- | 0.1381 | 4.0 | 712 | 0.1350 | {'precision': 0.7019704433497537, 'recall': 0.782967032967033, 'f1': 0.7402597402597403, 'number': 364} | {'precision': 0.6024096385542169, 'recall': 0.7575757575757576, 'f1': 0.6711409395973154, 'number': 66} | 0.6851 | 0.7791 | 0.7291 | 0.9564 |
59
- | 0.1381 | 5.0 | 890 | 0.1383 | {'precision': 0.6893203883495146, 'recall': 0.7802197802197802, 'f1': 0.7319587628865979, 'number': 364} | {'precision': 0.6329113924050633, 'recall': 0.7575757575757576, 'f1': 0.6896551724137931, 'number': 66} | 0.6802 | 0.7767 | 0.7253 | 0.9570 |
60
 
61
 
62
  ### Framework versions
 
15
 
16
  This model is a fine-tuned version of [dathi103/gbert-job](https://huggingface.co/dathi103/gbert-job) on an unknown dataset.
17
  It achieves the following results on the evaluation set:
18
+ - Loss: 0.1135
19
+ - Hard: {'precision': 0.7519685039370079, 'recall': 0.8377192982456141, 'f1': 0.7925311203319502, 'number': 456}
20
+ - Soft: {'precision': 0.6739130434782609, 'recall': 0.7560975609756098, 'f1': 0.7126436781609194, 'number': 82}
21
+ - Overall Precision: 0.74
22
+ - Overall Recall: 0.8253
23
+ - Overall F1: 0.7803
24
+ - Overall Accuracy: 0.9647
25
 
26
  ## Model description
27
 
 
52
 
53
  | Training Loss | Epoch | Step | Validation Loss | Hard | Soft | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
54
  |:-------------:|:-----:|:----:|:---------------:|:--------------------------------------------------------------------------------------------------------:|:-------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
55
+ | No log | 1.0 | 178 | 0.1201 | {'precision': 0.6016949152542372, 'recall': 0.7785087719298246, 'f1': 0.678776290630975, 'number': 456} | {'precision': 0.5894736842105263, 'recall': 0.6829268292682927, 'f1': 0.632768361581921, 'number': 82} | 0.6 | 0.7639 | 0.6721 | 0.9508 |
56
+ | No log | 2.0 | 356 | 0.1010 | {'precision': 0.6853281853281853, 'recall': 0.7785087719298246, 'f1': 0.728952772073922, 'number': 456} | {'precision': 0.632183908045977, 'recall': 0.6707317073170732, 'f1': 0.6508875739644969, 'number': 82} | 0.6777 | 0.7621 | 0.7174 | 0.9603 |
57
+ | 0.1417 | 3.0 | 534 | 0.1026 | {'precision': 0.7030075187969925, 'recall': 0.8201754385964912, 'f1': 0.757085020242915, 'number': 456} | {'precision': 0.65625, 'recall': 0.7682926829268293, 'f1': 0.7078651685393258, 'number': 82} | 0.6959 | 0.8123 | 0.7496 | 0.9598 |
58
+ | 0.1417 | 4.0 | 712 | 0.1122 | {'precision': 0.7311411992263056, 'recall': 0.8289473684210527, 'f1': 0.776978417266187, 'number': 456} | {'precision': 0.6464646464646465, 'recall': 0.7804878048780488, 'f1': 0.7071823204419891, 'number': 82} | 0.7175 | 0.8216 | 0.7660 | 0.9616 |
59
+ | 0.1417 | 5.0 | 890 | 0.1135 | {'precision': 0.7519685039370079, 'recall': 0.8377192982456141, 'f1': 0.7925311203319502, 'number': 456} | {'precision': 0.6739130434782609, 'recall': 0.7560975609756098, 'f1': 0.7126436781609194, 'number': 82} | 0.74 | 0.8253 | 0.7803 | 0.9647 |
60
 
61
 
62
  ### Framework versions