Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,9 +1,146 @@
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
tags:
|
| 3 |
-
-
|
| 4 |
-
-
|
| 5 |
---
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
+
base_model: bert-base-multilingual-uncased
|
| 3 |
+
datasets:
|
| 4 |
+
- almanach/hc3_french_ood
|
| 5 |
+
license: apache-2.0
|
| 6 |
tags:
|
| 7 |
+
- embedding_space_map
|
| 8 |
+
- BaseLM:bert-base-multilingual-uncased
|
| 9 |
---
|
| 10 |
|
| 11 |
+
# ESM almanach/hc3_french_ood
|
| 12 |
+
|
| 13 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
|
| 17 |
+
## Model Details
|
| 18 |
+
|
| 19 |
+
### Model Description
|
| 20 |
+
|
| 21 |
+
<!-- Provide a longer summary of what this model is. -->
|
| 22 |
+
|
| 23 |
+
ESM
|
| 24 |
+
|
| 25 |
+
- **Developed by:** David Schulte
|
| 26 |
+
- **Model type:** ESM
|
| 27 |
+
- **Base Model:** bert-base-multilingual-uncased
|
| 28 |
+
- **Intermediate Task:** almanach/hc3_french_ood
|
| 29 |
+
- **ESM architecture:** linear
|
| 30 |
+
- **Language(s) (NLP):** [More Information Needed]
|
| 31 |
+
- **License:** Apache-2.0 license
|
| 32 |
+
|
| 33 |
+
## Training Details
|
| 34 |
+
|
| 35 |
+
### Intermediate Task
|
| 36 |
+
- **Task ID:** almanach/hc3_french_ood
|
| 37 |
+
- **Subset [optional]:** hc3_fr_sentence
|
| 38 |
+
- **Text Column:** text
|
| 39 |
+
- **Label Column:** label
|
| 40 |
+
- **Dataset Split:** train
|
| 41 |
+
- **Sample size [optional]:** 10000
|
| 42 |
+
- **Sample seed [optional]:** 42
|
| 43 |
+
|
| 44 |
+
### Training Procedure [optional]
|
| 45 |
+
|
| 46 |
+
<!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
|
| 47 |
+
|
| 48 |
+
#### Language Model Training Hyperparameters [optional]
|
| 49 |
+
- **Epochs:** 3
|
| 50 |
+
- **Batch size:** 32
|
| 51 |
+
- **Learning rate:** 2e-05
|
| 52 |
+
- **Weight Decay:** 0.01
|
| 53 |
+
- **Optimizer**: AdamW
|
| 54 |
+
|
| 55 |
+
### ESM Training Hyperparameters [optional]
|
| 56 |
+
- **Epochs:** 10
|
| 57 |
+
- **Batch size:** 32
|
| 58 |
+
- **Learning rate:** 0.001
|
| 59 |
+
- **Weight Decay:** 0.01
|
| 60 |
+
- **Optimizer**: AdamW
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
### Additional trainiung details [optional]
|
| 64 |
+
|
| 65 |
+
|
| 66 |
+
## Model evaluation
|
| 67 |
+
|
| 68 |
+
### Evaluation of fine-tuned language model [optional]
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
### Evaluation of ESM [optional]
|
| 72 |
+
MSE:
|
| 73 |
+
|
| 74 |
+
### Additional evaluation details [optional]
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
## What are Embedding Space Maps?
|
| 79 |
+
|
| 80 |
+
<!-- This section describes the evaluation protocols and provides the results. -->
|
| 81 |
+
Embedding Space Maps (ESMs) are neural networks that approximate the effect of fine-tuning a language model on a task. They can be used to quickly transform embeddings from a base model to approximate how a fine-tuned model would embed the the input text.
|
| 82 |
+
ESMs can be used for intermediate task selection with the ESM-LogME workflow.
|
| 83 |
+
|
| 84 |
+
## How can I use Embedding Space Maps for Intermediate Task Selection?
|
| 85 |
+
[](https://pypi.org/project/hf-dataset-selector)
|
| 86 |
+
|
| 87 |
+
We release **hf-dataset-selector**, a Python package for intermediate task selection using Embedding Space Maps.
|
| 88 |
+
|
| 89 |
+
**hf-dataset-selector** fetches ESMs for a given language model and uses it to find the best dataset for applying intermediate training to the target task. ESMs are found by their tags on the Huggingface Hub.
|
| 90 |
+
|
| 91 |
+
```python
|
| 92 |
+
from hfselect import Dataset, compute_task_ranking
|
| 93 |
+
|
| 94 |
+
# Load target dataset from the Hugging Face Hub
|
| 95 |
+
dataset = Dataset.from_hugging_face(
|
| 96 |
+
name="stanfordnlp/imdb",
|
| 97 |
+
split="train",
|
| 98 |
+
text_col="text",
|
| 99 |
+
label_col="label",
|
| 100 |
+
is_regression=False,
|
| 101 |
+
num_examples=1000,
|
| 102 |
+
seed=42
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
# Fetch ESMs and rank tasks
|
| 106 |
+
task_ranking = compute_task_ranking(
|
| 107 |
+
dataset=dataset,
|
| 108 |
+
model_name="bert-base-multilingual-uncased"
|
| 109 |
+
)
|
| 110 |
+
|
| 111 |
+
# Display top 5 recommendations
|
| 112 |
+
print(task_ranking[:5])
|
| 113 |
+
```
|
| 114 |
+
|
| 115 |
+
For more information on how to use ESMs please have a look at the [official Github repository](https://github.com/davidschulte/hf-dataset-selector).
|
| 116 |
+
|
| 117 |
+
## Citation
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
| 121 |
+
If you are using this Embedding Space Maps, please cite our [paper](https://arxiv.org/abs/2410.15148).
|
| 122 |
+
|
| 123 |
+
**BibTeX:**
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
```
|
| 127 |
+
@misc{schulte2024moreparameterefficientselectionintermediate,
|
| 128 |
+
title={Less is More: Parameter-Efficient Selection of Intermediate Tasks for Transfer Learning},
|
| 129 |
+
author={David Schulte and Felix Hamborg and Alan Akbik},
|
| 130 |
+
year={2024},
|
| 131 |
+
eprint={2410.15148},
|
| 132 |
+
archivePrefix={arXiv},
|
| 133 |
+
primaryClass={cs.CL},
|
| 134 |
+
url={https://arxiv.org/abs/2410.15148},
|
| 135 |
+
}
|
| 136 |
+
```
|
| 137 |
+
|
| 138 |
+
|
| 139 |
+
**APA:**
|
| 140 |
+
|
| 141 |
+
```
|
| 142 |
+
Schulte, D., Hamborg, F., & Akbik, A. (2024). Less is More: Parameter-Efficient Selection of Intermediate Tasks for Transfer Learning. arXiv preprint arXiv:2410.15148.
|
| 143 |
+
```
|
| 144 |
+
|
| 145 |
+
## Additional Information
|
| 146 |
+
|