msr2000 commited on
Commit
846b34e
·
verified ·
1 Parent(s): 4d02631

Add files using upload-large-folder tool

Browse files
Files changed (50) hide show
  1. LICENSE +21 -0
  2. config.json +68 -0
  3. configuration_deepseek.py +199 -0
  4. generation_config.json +9 -0
  5. inference/README.md +13 -0
  6. inference/config_671B_v3.1.json +23 -0
  7. inference/convert.py +96 -0
  8. inference/generate.py +186 -0
  9. inference/kernel.py +274 -0
  10. inference/model.py +822 -0
  11. inference/requirements.txt +4 -0
  12. model-00001-of-000163.safetensors +3 -0
  13. model-00002-of-000163.safetensors +3 -0
  14. model-00003-of-000163.safetensors +3 -0
  15. model-00004-of-000163.safetensors +3 -0
  16. model-00005-of-000163.safetensors +3 -0
  17. model-00006-of-000163.safetensors +3 -0
  18. model-00007-of-000163.safetensors +3 -0
  19. model-00008-of-000163.safetensors +3 -0
  20. model-00009-of-000163.safetensors +3 -0
  21. model-00010-of-000163.safetensors +3 -0
  22. model-00011-of-000163.safetensors +3 -0
  23. model-00012-of-000163.safetensors +3 -0
  24. model-00013-of-000163.safetensors +3 -0
  25. model-00014-of-000163.safetensors +3 -0
  26. model-00015-of-000163.safetensors +3 -0
  27. model-00016-of-000163.safetensors +3 -0
  28. model-00017-of-000163.safetensors +3 -0
  29. model-00018-of-000163.safetensors +3 -0
  30. model-00019-of-000163.safetensors +3 -0
  31. model-00020-of-000163.safetensors +3 -0
  32. model-00021-of-000163.safetensors +3 -0
  33. model-00022-of-000163.safetensors +3 -0
  34. model-00023-of-000163.safetensors +3 -0
  35. model-00024-of-000163.safetensors +3 -0
  36. model-00025-of-000163.safetensors +3 -0
  37. model-00026-of-000163.safetensors +3 -0
  38. model-00027-of-000163.safetensors +3 -0
  39. model-00028-of-000163.safetensors +3 -0
  40. model-00029-of-000163.safetensors +3 -0
  41. model-00030-of-000163.safetensors +3 -0
  42. model-00031-of-000163.safetensors +3 -0
  43. model-00032-of-000163.safetensors +3 -0
  44. model-00033-of-000163.safetensors +3 -0
  45. model-00034-of-000163.safetensors +3 -0
  46. model-00035-of-000163.safetensors +3 -0
  47. model.safetensors.index.json +0 -0
  48. modeling_deepseek.py +1848 -0
  49. tokenizer.json +0 -0
  50. tokenizer_config.json +35 -0
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2023 DeepSeek
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
config.json ADDED
@@ -0,0 +1,68 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "DeepseekV3ForCausalLM"
4
+ ],
5
+ "attention_bias": false,
6
+ "attention_dropout": 0.0,
7
+ "attn_module_list_cfg": [],
8
+ "auto_map": {
9
+ "AutoConfig": "configuration_deepseek.DeepseekV3Config",
10
+ "AutoModel": "modeling_deepseek.DeepseekV3Model",
11
+ "AutoModelForCausalLM": "modeling_deepseek.DeepseekV3ForCausalLM"
12
+ },
13
+ "bos_token_id": 0,
14
+ "eos_token_id": 1,
15
+ "ep_size": 1,
16
+ "first_k_dense_replace": 3,
17
+ "hidden_act": "silu",
18
+ "hidden_size": 7168,
19
+ "initializer_range": 0.02,
20
+ "intermediate_size": 18432,
21
+ "kv_lora_rank": 512,
22
+ "max_position_embeddings": 163840,
23
+ "model_type": "deepseek_v3",
24
+ "moe_intermediate_size": 2048,
25
+ "moe_layer_freq": 1,
26
+ "n_group": 8,
27
+ "n_routed_experts": 256,
28
+ "n_shared_experts": 1,
29
+ "norm_topk_prob": true,
30
+ "num_attention_heads": 128,
31
+ "num_experts_per_tok": 8,
32
+ "num_hidden_layers": 61,
33
+ "num_key_value_heads": 128,
34
+ "num_nextn_predict_layers": 1,
35
+ "q_lora_rank": 1536,
36
+ "qk_nope_head_dim": 128,
37
+ "qk_rope_head_dim": 64,
38
+ "quantization_config": {
39
+ "activation_scheme": "dynamic",
40
+ "fmt": "e4m3",
41
+ "quant_method": "fp8",
42
+ "weight_block_size": [
43
+ 128,
44
+ 128
45
+ ]
46
+ },
47
+ "rms_norm_eps": 1e-06,
48
+ "rope_scaling": {
49
+ "beta_fast": 32,
50
+ "beta_slow": 1,
51
+ "factor": 40,
52
+ "mscale": 1.0,
53
+ "mscale_all_dim": 1.0,
54
+ "original_max_position_embeddings": 4096,
55
+ "type": "yarn"
56
+ },
57
+ "rope_theta": 10000,
58
+ "routed_scaling_factor": 2.5,
59
+ "scoring_func": "sigmoid",
60
+ "tie_word_embeddings": false,
61
+ "topk_group": 4,
62
+ "topk_method": "noaux_tc",
63
+ "torch_dtype": "bfloat16",
64
+ "transformers_version": "4.44.2",
65
+ "use_cache": true,
66
+ "v_head_dim": 128,
67
+ "vocab_size": 129280
68
+ }
configuration_deepseek.py ADDED
@@ -0,0 +1,199 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from transformers.configuration_utils import PretrainedConfig
2
+ from transformers.utils import logging
3
+
4
+ logger = logging.get_logger(__name__)
5
+
6
+ DEEPSEEK_PRETRAINED_CONFIG_ARCHIVE_MAP = {}
7
+ class DeepseekV3Config(PretrainedConfig):
8
+ r"""
9
+ This is the configuration class to store the configuration of a [`DeepseekV3Model`]. It is used to instantiate an DeepSeek
10
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
11
+ defaults will yield a similar configuration to that of the DeepSeek-V3.
12
+
13
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
14
+ documentation from [`PretrainedConfig`] for more information.
15
+
16
+
17
+ Args:
18
+ vocab_size (`int`, *optional*, defaults to 129280):
19
+ Vocabulary size of the Deep model. Defines the number of different tokens that can be represented by the
20
+ `inputs_ids` passed when calling [`DeepseekV3Model`]
21
+ hidden_size (`int`, *optional*, defaults to 4096):
22
+ Dimension of the hidden representations.
23
+ intermediate_size (`int`, *optional*, defaults to 11008):
24
+ Dimension of the MLP representations.
25
+ moe_intermediate_size (`int`, *optional*, defaults to 1407):
26
+ Dimension of the MoE representations.
27
+ num_hidden_layers (`int`, *optional*, defaults to 32):
28
+ Number of hidden layers in the Transformer decoder.
29
+ num_nextn_predict_layers (`int`, *optional*, defaults to 1):
30
+ Number of nextn predict layers in the DeepSeekV3 Model.
31
+ num_attention_heads (`int`, *optional*, defaults to 32):
32
+ Number of attention heads for each attention layer in the Transformer decoder.
33
+ n_shared_experts (`int`, *optional*, defaults to None):
34
+ Number of shared experts, None means dense model.
35
+ n_routed_experts (`int`, *optional*, defaults to None):
36
+ Number of routed experts, None means dense model.
37
+ routed_scaling_factor (`float`, *optional*, defaults to 1.0):
38
+ Scaling factor or routed experts.
39
+ topk_method (`str`, *optional*, defaults to `gready`):
40
+ Topk method used in routed gate.
41
+ n_group (`int`, *optional*, defaults to None):
42
+ Number of groups for routed experts.
43
+ topk_group (`int`, *optional*, defaults to None):
44
+ Number of selected groups for each token(for each token, ensuring the selected experts is only within `topk_group` groups).
45
+ num_experts_per_tok (`int`, *optional*, defaults to None):
46
+ Number of selected experts, None means dense model.
47
+ moe_layer_freq (`int`, *optional*, defaults to 1):
48
+ The frequency of the MoE layer: one expert layer for every `moe_layer_freq - 1` dense layers.
49
+ first_k_dense_replace (`int`, *optional*, defaults to 0):
50
+ Number of dense layers in shallow layers(embed->dense->dense->...->dense->moe->moe...->lm_head).
51
+ \--k dense layers--/
52
+ norm_topk_prob (`bool`, *optional*, defaults to False):
53
+ Whether to normalize the weights of the routed experts.
54
+ scoring_func (`str`, *optional*, defaults to 'softmax'):
55
+ Method of computing expert weights.
56
+ aux_loss_alpha (`float`, *optional*, defaults to 0.001):
57
+ Auxiliary loss weight coefficient.
58
+ seq_aux = (`bool`, *optional*, defaults to True):
59
+ Whether to compute the auxiliary loss for each individual sample.
60
+ num_key_value_heads (`int`, *optional*):
61
+ This is the number of key_value heads that should be used to implement Grouped Query Attention. If
62
+ `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
63
+ `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
64
+ converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
65
+ by meanpooling all the original heads within that group. For more details checkout [this
66
+ paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to
67
+ `num_attention_heads`.
68
+ hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
69
+ The non-linear activation function (function or string) in the decoder.
70
+ max_position_embeddings (`int`, *optional*, defaults to 2048):
71
+ The maximum sequence length that this model might ever be used with.
72
+ initializer_range (`float`, *optional*, defaults to 0.02):
73
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
74
+ rms_norm_eps (`float`, *optional*, defaults to 1e-06):
75
+ The epsilon used by the rms normalization layers.
76
+ use_cache (`bool`, *optional*, defaults to `True`):
77
+ Whether or not the model should return the last key/values attentions (not used by all models). Only
78
+ relevant if `config.is_decoder=True`.
79
+ pad_token_id (`int`, *optional*):
80
+ Padding token id.
81
+ bos_token_id (`int`, *optional*, defaults to 1):
82
+ Beginning of stream token id.
83
+ eos_token_id (`int`, *optional*, defaults to 2):
84
+ End of stream token id.
85
+ tie_word_embeddings (`bool`, *optional*, defaults to `False`):
86
+ Whether to tie weight embeddings
87
+ rope_theta (`float`, *optional*, defaults to 10000.0):
88
+ The base period of the RoPE embeddings.
89
+ rope_scaling (`Dict`, *optional*):
90
+ Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling
91
+ strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is
92
+ `{"type": strategy name, "factor": scaling factor}`. When using this flag, don't update
93
+ `max_position_embeddings` to the expected new maximum.
94
+ attention_bias (`bool`, defaults to `False`, *optional*, defaults to `False`):
95
+ Whether to use a bias in the query, key, value and output projection layers during self-attention.
96
+ attention_dropout (`float`, *optional*, defaults to 0.0):
97
+ The dropout ratio for the attention probabilities.
98
+
99
+ ```python
100
+ >>> from transformers import DeepseekV3Model, DeepseekV3Config
101
+
102
+ >>> # Initializing a Deepseek-V3 style configuration
103
+ >>> configuration = DeepseekV3Config()
104
+
105
+ >>> # Accessing the model configuration
106
+ >>> configuration = model.config
107
+ ```"""
108
+
109
+ model_type = "deepseek_v3"
110
+ keys_to_ignore_at_inference = ["past_key_values"]
111
+
112
+ def __init__(
113
+ self,
114
+ vocab_size=129280,
115
+ hidden_size=7168,
116
+ intermediate_size=18432,
117
+ moe_intermediate_size = 2048,
118
+ num_hidden_layers=61,
119
+ num_nextn_predict_layers=1,
120
+ num_attention_heads=128,
121
+ num_key_value_heads=128,
122
+ n_shared_experts = 1,
123
+ n_routed_experts = 256,
124
+ ep_size = 1,
125
+ routed_scaling_factor = 2.5,
126
+ kv_lora_rank = 512,
127
+ q_lora_rank = 1536,
128
+ qk_rope_head_dim = 64,
129
+ v_head_dim = 128,
130
+ qk_nope_head_dim = 128,
131
+ topk_method = 'noaux_tc',
132
+ n_group = 8,
133
+ topk_group = 4,
134
+ num_experts_per_tok = 8,
135
+ moe_layer_freq = 1,
136
+ first_k_dense_replace = 3,
137
+ norm_topk_prob = True,
138
+ scoring_func = 'sigmoid',
139
+ hidden_act="silu",
140
+ max_position_embeddings=4096,
141
+ initializer_range=0.02,
142
+ rms_norm_eps=1e-6,
143
+ use_cache=True,
144
+ pad_token_id=None,
145
+ bos_token_id=0,
146
+ eos_token_id=1,
147
+ tie_word_embeddings=False,
148
+ rope_theta=10000.0,
149
+ rope_scaling=None,
150
+ attention_bias=False,
151
+ attention_dropout=0.0,
152
+ **kwargs,
153
+ ):
154
+ self.vocab_size = vocab_size
155
+ self.max_position_embeddings = max_position_embeddings
156
+ self.hidden_size = hidden_size
157
+ self.intermediate_size = intermediate_size
158
+ self.moe_intermediate_size = moe_intermediate_size
159
+ self.num_hidden_layers = num_hidden_layers
160
+ self.num_nextn_predict_layers = num_nextn_predict_layers
161
+ self.num_attention_heads = num_attention_heads
162
+ self.n_shared_experts = n_shared_experts
163
+ self.n_routed_experts = n_routed_experts
164
+ self.ep_size = ep_size
165
+ self.routed_scaling_factor = routed_scaling_factor
166
+ self.kv_lora_rank = kv_lora_rank
167
+ self.q_lora_rank = q_lora_rank
168
+ self.qk_rope_head_dim = qk_rope_head_dim
169
+ self.v_head_dim = v_head_dim
170
+ self.qk_nope_head_dim = qk_nope_head_dim
171
+ self.topk_method = topk_method
172
+ self.n_group = n_group
173
+ self.topk_group = topk_group
174
+ self.num_experts_per_tok = num_experts_per_tok
175
+ self.moe_layer_freq = moe_layer_freq
176
+ self.first_k_dense_replace = first_k_dense_replace
177
+ self.norm_topk_prob = norm_topk_prob
178
+ self.scoring_func = scoring_func
179
+ # for backward compatibility
180
+ if num_key_value_heads is None:
181
+ num_key_value_heads = num_attention_heads
182
+
183
+ self.num_key_value_heads = num_key_value_heads
184
+ self.hidden_act = hidden_act
185
+ self.initializer_range = initializer_range
186
+ self.rms_norm_eps = rms_norm_eps
187
+ self.use_cache = use_cache
188
+ self.rope_theta = rope_theta
189
+ self.rope_scaling = rope_scaling
190
+ self.attention_bias = attention_bias
191
+ self.attention_dropout = attention_dropout
192
+
193
+ super().__init__(
194
+ pad_token_id=pad_token_id,
195
+ bos_token_id=bos_token_id,
196
+ eos_token_id=eos_token_id,
197
+ tie_word_embeddings=tie_word_embeddings,
198
+ **kwargs,
199
+ )
generation_config.json ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 0,
4
+ "eos_token_id": 1,
5
+ "do_sample": true,
6
+ "temperature": 0.6,
7
+ "top_p": 0.95,
8
+ "transformers_version": "4.46.3"
9
+ }
inference/README.md ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # DeepSeek V3.1
2
+
3
+ First convert huggingface model weight files to the format of this project.
4
+ ```bash
5
+ export EXPERTS=256
6
+ python convert.py --hf-ckpt-path ${HF_CKPT_PATH} --save-path ${SAVE_PATH} --n-experts ${EXPERTS} --model-parallel ${MP}
7
+ ```
8
+
9
+ Then chat with DeepSeek model at will!
10
+ ```bash
11
+ export CONFIG=config_671B_v3.1.json
12
+ torchrun --nproc-per-node ${MP} generate.py --ckpt-path ${SAVE_PATH} --config ${CONFIG} --interactive --temperature {T}
13
+ ```
inference/config_671B_v3.1.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "vocab_size": 129280,
3
+ "dim": 7168,
4
+ "inter_dim": 18432,
5
+ "moe_inter_dim": 2048,
6
+ "n_layers": 61,
7
+ "n_dense_layers": 3,
8
+ "n_heads": 128,
9
+ "n_routed_experts": 256,
10
+ "n_shared_experts": 1,
11
+ "n_activated_experts": 8,
12
+ "n_expert_groups": 8,
13
+ "n_limited_groups": 4,
14
+ "route_scale": 2.5,
15
+ "score_func": "sigmoid",
16
+ "q_lora_rank": 1536,
17
+ "kv_lora_rank": 512,
18
+ "qk_nope_head_dim": 128,
19
+ "qk_rope_head_dim": 64,
20
+ "v_head_dim": 128,
21
+ "dtype": "fp8",
22
+ "scale_fmt": "ue8m0"
23
+ }
inference/convert.py ADDED
@@ -0,0 +1,96 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import shutil
3
+ from argparse import ArgumentParser
4
+ from glob import glob
5
+ from tqdm import tqdm, trange
6
+
7
+ import torch
8
+ from safetensors.torch import safe_open, save_file
9
+
10
+
11
+ mapping = {
12
+ "embed_tokens": ("embed", 0),
13
+ "input_layernorm": ("attn_norm", None),
14
+ "post_attention_layernorm": ("ffn_norm", None),
15
+ "q_proj": ("wq", 0),
16
+ "q_a_proj": ("wq_a", None),
17
+ "q_a_layernorm": ("q_norm", None),
18
+ "q_b_proj": ("wq_b", 0),
19
+ "kv_a_proj_with_mqa": ("wkv_a", None),
20
+ "kv_a_layernorm": ("kv_norm", None),
21
+ "kv_b_proj": ("wkv_b", 0),
22
+ "o_proj": ("wo", 1),
23
+ "gate": ("gate", None),
24
+ "gate_proj": ("w1", 0),
25
+ "down_proj": ("w2", 1),
26
+ "up_proj": ("w3", 0),
27
+ "norm": ("norm", None),
28
+ "lm_head": ("head", 0),
29
+ "scale": ("scale", None),
30
+ }
31
+
32
+
33
+ def main(hf_ckpt_path, save_path, n_experts, mp):
34
+ """
35
+ Converts and saves model checkpoint files into a specified format.
36
+
37
+ Args:
38
+ hf_ckpt_path (str): Path to the directory containing the input checkpoint files.
39
+ save_path (str): Path to the directory where the converted checkpoint files will be saved.
40
+ n_experts (int): Total number of experts in the model.
41
+ mp (int): Model parallelism factor.
42
+
43
+ Returns:
44
+ None
45
+ """
46
+ torch.set_num_threads(8)
47
+ n_local_experts = n_experts // mp
48
+ state_dicts = [{} for _ in range(mp)]
49
+
50
+ for file_path in tqdm(glob(os.path.join(hf_ckpt_path, "*.safetensors"))):
51
+ with safe_open(file_path, framework="pt", device="cpu") as f:
52
+ for name in f.keys():
53
+ if "model.layers.61" in name:
54
+ continue
55
+ param: torch.Tensor = f.get_tensor(name)
56
+ if name.startswith("model."):
57
+ name = name[len("model."):]
58
+ name = name.replace("self_attn", "attn")
59
+ name = name.replace("mlp", "ffn")
60
+ name = name.replace("weight_scale_inv", "scale")
61
+ name = name.replace("e_score_correction_bias", "bias")
62
+ key = name.split(".")[-2]
63
+ assert key in mapping, f"Key {key} not found in mapping"
64
+ new_key, dim = mapping[key]
65
+ name = name.replace(key, new_key)
66
+ for i in range(mp):
67
+ new_param = param
68
+ if "experts" in name and "shared_experts" not in name:
69
+ idx = int(name.split(".")[-3])
70
+ if idx < i * n_local_experts or idx >= (i + 1) * n_local_experts:
71
+ continue
72
+ elif dim is not None:
73
+ assert param.size(dim) % mp == 0, f"Dimension {dim} must be divisible by {mp}"
74
+ shard_size = param.size(dim) // mp
75
+ new_param = param.narrow(dim, i * shard_size, shard_size).contiguous()
76
+ state_dicts[i][name] = new_param
77
+
78
+ os.makedirs(save_path, exist_ok=True)
79
+
80
+ for i in trange(mp):
81
+ save_file(state_dicts[i], os.path.join(save_path, f"model{i}-mp{mp}.safetensors"))
82
+
83
+ for file_path in glob(os.path.join(hf_ckpt_path, "*token*")):
84
+ new_file_path = os.path.join(save_path, os.path.basename(file_path))
85
+ shutil.copyfile(file_path, new_file_path)
86
+
87
+
88
+ if __name__ == "__main__":
89
+ parser = ArgumentParser()
90
+ parser.add_argument("--hf-ckpt-path", type=str, required=True)
91
+ parser.add_argument("--save-path", type=str, required=True)
92
+ parser.add_argument("--n-experts", type=int, required=True)
93
+ parser.add_argument("--model-parallel", type=int, required=True)
94
+ args = parser.parse_args()
95
+ assert args.n_experts % args.model_parallel == 0, "Number of experts must be divisible by model parallelism"
96
+ main(args.hf_ckpt_path, args.save_path, args.n_experts, args.model_parallel)
inference/generate.py ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import json
3
+ from argparse import ArgumentParser
4
+ from typing import List
5
+
6
+ import torch
7
+ import torch.distributed as dist
8
+ from transformers import AutoTokenizer
9
+ from safetensors.torch import load_model
10
+
11
+ from model import Transformer, ModelArgs
12
+
13
+
14
+ def sample(logits, temperature: float = 1.0):
15
+ """
16
+ Samples a token from the logits using temperature scaling.
17
+
18
+ Args:
19
+ logits (torch.Tensor): The logits tensor for token predictions.
20
+ temperature (float, optional): Temperature for scaling logits. Defaults to 1.0.
21
+
22
+ Returns:
23
+ torch.Tensor: The sampled token.
24
+ """
25
+ logits = logits / max(temperature, 1e-5)
26
+ probs = torch.softmax(logits, dim=-1, dtype=torch.float32)
27
+ return probs.div_(torch.empty_like(probs).exponential_(1)).argmax(dim=-1)
28
+
29
+
30
+ @torch.inference_mode()
31
+ def generate(
32
+ model: Transformer,
33
+ prompt_tokens: List[List[int]],
34
+ max_new_tokens: int,
35
+ eos_id: int,
36
+ temperature: float = 1.0
37
+ ) -> List[List[int]]:
38
+ """
39
+ Generates new tokens based on the given prompt tokens using the specified model.
40
+
41
+ Args:
42
+ model (Transformer): The transformer model used for token generation.
43
+ prompt_tokens (List[List[int]]): A list of lists containing the prompt tokens for each sequence.
44
+ max_new_tokens (int): The maximum number of new tokens to generate.
45
+ eos_id (int): The end-of-sequence token ID.
46
+ temperature (float, optional): The temperature value for sampling. Defaults to 1.0.
47
+
48
+ Returns:
49
+ List[List[int]]: A list of lists containing the generated tokens for each sequence.
50
+ """
51
+ prompt_lens = [len(t) for t in prompt_tokens]
52
+ assert max(prompt_lens) <= model.max_seq_len, f"Prompt length exceeds model maximum sequence length (max_seq_len={model.max_seq_len})"
53
+ total_len = min(model.max_seq_len, max_new_tokens + max(prompt_lens))
54
+ tokens = torch.full((len(prompt_tokens), total_len), -1, dtype=torch.long, device="cuda")
55
+ for i, t in enumerate(prompt_tokens):
56
+ tokens[i, :len(t)] = torch.tensor(t, dtype=torch.long, device="cuda")
57
+ prev_pos = 0
58
+ finished = torch.tensor([False] * len(prompt_tokens), device="cuda")
59
+ prompt_mask = tokens != -1
60
+ for cur_pos in range(min(prompt_lens), total_len):
61
+ logits = model.forward(tokens[:, prev_pos:cur_pos], prev_pos)
62
+ if temperature > 0:
63
+ next_token = sample(logits, temperature)
64
+ else:
65
+ next_token = logits.argmax(dim=-1)
66
+ next_token = torch.where(prompt_mask[:, cur_pos], tokens[:, cur_pos], next_token)
67
+ tokens[:, cur_pos] = next_token
68
+ finished |= torch.logical_and(~prompt_mask[:, cur_pos], next_token == eos_id)
69
+ prev_pos = cur_pos
70
+ if finished.all():
71
+ break
72
+ completion_tokens = []
73
+ for i, toks in enumerate(tokens.tolist()):
74
+ toks = toks[prompt_lens[i]:prompt_lens[i]+max_new_tokens]
75
+ if eos_id in toks:
76
+ toks = toks[:toks.index(eos_id)]
77
+ completion_tokens.append(toks)
78
+ return completion_tokens
79
+
80
+
81
+ def main(
82
+ ckpt_path: str,
83
+ config: str,
84
+ input_file: str = "",
85
+ interactive: bool = True,
86
+ max_new_tokens: int = 100,
87
+ temperature: float = 1.0,
88
+ ) -> None:
89
+ """
90
+ Main function to load the model and perform interactive or batch text generation.
91
+
92
+ Args:
93
+ ckpt_path (str): Path to the model checkpoint directory.
94
+ config (str): Path to the model configuration file.
95
+ input_file (str, optional): Path to a file containing input prompts. Defaults to "".
96
+ interactive (bool, optional): Whether to run in interactive mode. Defaults to True.
97
+ max_new_tokens (int, optional): Maximum number of new tokens to generate. Defaults to 100.
98
+ temperature (float, optional): Temperature for sampling. Defaults to 1.0.
99
+ """
100
+ world_size = int(os.getenv("WORLD_SIZE", "1"))
101
+ rank = int(os.getenv("RANK", "0"))
102
+ local_rank = int(os.getenv("LOCAL_RANK", "0"))
103
+ if world_size > 1:
104
+ dist.init_process_group("nccl")
105
+ global print
106
+ if rank != 0:
107
+ print = lambda *_, **__: None
108
+ torch.cuda.set_device(local_rank)
109
+ torch.set_default_dtype(torch.bfloat16)
110
+ torch.set_num_threads(8)
111
+ torch.manual_seed(33377335)
112
+ with open(config) as f:
113
+ args = ModelArgs(**json.load(f))
114
+ print(args)
115
+ with torch.device("cuda"):
116
+ model = Transformer(args)
117
+ tokenizer = AutoTokenizer.from_pretrained(ckpt_path)
118
+ print("load model")
119
+ load_model(model, os.path.join(ckpt_path, f"model{rank}-mp{world_size}.safetensors"))
120
+ print("I'm DeepSeek 👋")
121
+
122
+ if interactive:
123
+ messages = []
124
+ while True:
125
+ if world_size == 1:
126
+ prompt = input(">>> ")
127
+ elif rank == 0:
128
+ prompt = input(">>> ")
129
+ objects = [prompt]
130
+ dist.broadcast_object_list(objects, 0)
131
+ else:
132
+ objects = [None]
133
+ dist.broadcast_object_list(objects, 0)
134
+ prompt = objects[0]
135
+ if prompt == "/exit":
136
+ break
137
+ elif prompt == "/clear":
138
+ messages.clear()
139
+ continue
140
+ messages.append({"role": "user", "content": prompt})
141
+ prompt_tokens = tokenizer.apply_chat_template(messages, add_generation_prompt=True)
142
+ completion_tokens = generate(model, [prompt_tokens], max_new_tokens, tokenizer.eos_token_id, temperature)
143
+ completion = tokenizer.decode(completion_tokens[0], skip_special_tokens=True)
144
+ print(completion)
145
+ messages.append({"role": "assistant", "content": completion})
146
+ else:
147
+ with open(input_file) as f:
148
+ prompts = f.read().split("\n\n")
149
+ assert len(prompts) <= args.max_batch_size, f"Number of prompts exceeds maximum batch size ({args.max_batch_size})"
150
+ prompt_tokens = [tokenizer.apply_chat_template([{"role": "user", "content": prompt}], add_generation_prompt=True) for prompt in prompts]
151
+ completion_tokens = generate(model, prompt_tokens, max_new_tokens, tokenizer.eos_token_id, temperature)
152
+ completions = tokenizer.batch_decode(completion_tokens, skip_special_tokens=True)
153
+ for prompt, completion in zip(prompts, completions):
154
+ print("Prompt:", prompt)
155
+ print("Completion:", completion)
156
+ print()
157
+
158
+ if world_size > 1:
159
+ dist.destroy_process_group()
160
+
161
+
162
+ if __name__ == "__main__":
163
+ """
164
+ Command-line interface for distributed text generation.
165
+
166
+ Arguments:
167
+ --ckpt-path (str): Path to the model checkpoint directory.
168
+ --config (str): Path to the model configuration file.
169
+ --input-file (str, optional): File containing prompts for batch processing.
170
+ --interactive (bool, optional): Enable interactive mode for generating text.
171
+ --max-new-tokens (int, optional): Maximum number of new tokens to generate. Defaults to 200.
172
+ --temperature (float, optional): Temperature for sampling. Defaults to 0.2.
173
+
174
+ Raises:
175
+ AssertionError: If neither input-file nor interactive mode is specified.
176
+ """
177
+ parser = ArgumentParser()
178
+ parser.add_argument("--ckpt-path", type=str, required=True)
179
+ parser.add_argument("--config", type=str, required=True)
180
+ parser.add_argument("--input-file", type=str, default="")
181
+ parser.add_argument("--interactive", action="store_true")
182
+ parser.add_argument("--max-new-tokens", type=int, default=200)
183
+ parser.add_argument("--temperature", type=float, default=0.6)
184
+ args = parser.parse_args()
185
+ assert args.input_file or args.interactive, "Either input-file or interactive mode must be specified"
186
+ main(args.ckpt_path, args.config, args.input_file, args.interactive, args.max_new_tokens, args.temperature)
inference/kernel.py ADDED
@@ -0,0 +1,274 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import tilelang
3
+ import tilelang.language as T
4
+ from typing import Tuple, Optional
5
+
6
+
7
+ tilelang.set_log_level("WARNING")
8
+
9
+ pass_configs = {
10
+ tilelang.PassConfigKey.TL_DISABLE_WARP_SPECIALIZED: True,
11
+ tilelang.PassConfigKey.TL_DISABLE_TMA_LOWER: True,
12
+ tilelang.PassConfigKey.TL_DISABLE_FAST_MATH: True,
13
+ }
14
+
15
+ FP8 = "float8_e4m3"
16
+ BF16 = "bfloat16"
17
+ FP32 = "float32"
18
+
19
+
20
+ def fast_log2_ceil(x):
21
+ bits_x = T.reinterpret("uint32", x)
22
+ exp_x = (bits_x >> 23) & 0xFF
23
+ man_bits = bits_x & ((1 << 23) - 1)
24
+ return T.Cast("int32", exp_x - 127 + T.if_then_else(man_bits != 0, 1, 0))
25
+
26
+
27
+ def fast_pow2(x):
28
+ bits_x = (x + 127) << 23
29
+ return T.reinterpret("float32", bits_x)
30
+
31
+
32
+ def fast_round_scale(amax, fp8_max_inv):
33
+ return fast_pow2(fast_log2_ceil(amax * fp8_max_inv))
34
+
35
+
36
+ @tilelang.jit(pass_configs=pass_configs)
37
+ def act_quant_kernel(
38
+ N, in_dtype=BF16, out_dtype=FP8, scale_dtype=FP32, round_scale=False
39
+ ):
40
+ M = T.symbolic("M")
41
+ fp8_min = -448.0
42
+ fp8_max = 448.0
43
+ fp8_max_inv = 1 / fp8_max
44
+ num_stages = 0 if round_scale else 2
45
+ blk_m = 32
46
+ group_size = 128
47
+
48
+ @T.prim_func
49
+ def act_quant_kernel_(
50
+ X: T.Tensor[(M, N), in_dtype],
51
+ Y: T.Tensor[(M, N), out_dtype],
52
+ S: T.Tensor[(M, T.ceildiv(N, group_size)), scale_dtype],
53
+ ):
54
+ with T.Kernel(T.ceildiv(M, blk_m), T.ceildiv(N, group_size), threads=128) as (
55
+ pid_m,
56
+ pid_n,
57
+ ):
58
+ x_shared = T.alloc_shared((blk_m, group_size), in_dtype)
59
+ x_local = T.alloc_fragment((blk_m, group_size), in_dtype)
60
+ amax_local = T.alloc_fragment((blk_m,), scale_dtype)
61
+ s_local = T.alloc_fragment((blk_m,), scale_dtype)
62
+ y_local = T.alloc_fragment((blk_m, group_size), out_dtype)
63
+ y_shared = T.alloc_shared((blk_m, group_size), out_dtype)
64
+
65
+ for _ in T.Pipelined(1, num_stages=num_stages):
66
+ T.copy(X[pid_m * blk_m, pid_n * group_size], x_shared)
67
+ T.copy(x_shared, x_local)
68
+ T.reduce_absmax(x_local, amax_local, dim=1)
69
+ for i in T.Parallel(blk_m):
70
+ amax_local[i] = T.max(amax_local[i], 1e-4)
71
+ if round_scale:
72
+ s_local[i] = fast_round_scale(amax_local[i], fp8_max_inv)
73
+ else:
74
+ s_local[i] = amax_local[i] * fp8_max_inv
75
+ for i, j in T.Parallel(blk_m, group_size):
76
+ y_local[i, j] = T.clamp(
77
+ x_local[i, j] / s_local[i], fp8_min, fp8_max
78
+ )
79
+ for i in T.Parallel(blk_m):
80
+ S[pid_m * blk_m + i, pid_n] = s_local[i]
81
+ T.copy(y_local, y_shared)
82
+ T.copy(y_shared, Y[pid_m * blk_m, pid_n * group_size])
83
+
84
+ return act_quant_kernel_
85
+
86
+
87
+ def act_quant(
88
+ x: torch.Tensor, block_size: int = 128, scale_fmt: Optional[str] = None
89
+ ) -> Tuple[torch.Tensor, torch.Tensor]:
90
+ """
91
+ Quantizes the input tensor `x` using block-wise quantization.
92
+
93
+ Args:
94
+ x (torch.Tensor): The input tensor to be quantized. Must be contiguous and its last dimension size must be divisible by `block_size`.
95
+ block_size (int, optional): The size of the blocks to be used for quantization. Default is 128.
96
+ scale_fmt (Optional[str], optional): The format of the scale. Default is None.
97
+ Returns:
98
+ Tuple[torch.Tensor, torch.Tensor]: A tuple containing:
99
+ - The quantized tensor with dtype `torch.float8_e4m3fn`.
100
+ - A tensor of scaling factors with dtype `torch.float32`.
101
+ """
102
+ assert x.is_contiguous(), "Input tensor must be contiguous"
103
+ assert x.size(-1) % block_size == 0, (
104
+ f"Last dimension size must be divisible by block_size (block_size={block_size})"
105
+ )
106
+ N = x.size(-1)
107
+ y = torch.empty_like(x, dtype=torch.float8_e4m3fn)
108
+ s = x.new_empty(*x.size()[:-1], N // block_size, dtype=torch.float32)
109
+ kernel = act_quant_kernel(N, round_scale=scale_fmt is not None)
110
+ kernel(x.view(-1, N), y.view(-1, N), s.view(-1, N // block_size))
111
+ return y, s
112
+
113
+
114
+ @tilelang.jit(pass_configs=pass_configs)
115
+ def fp8_gemm_kernel(N, K, out_dtype=BF16, accum_dtype="float32"):
116
+ assert out_dtype in [BF16, "float32"]
117
+
118
+ M = T.symbolic("M")
119
+ group_size = 128
120
+ block_M = 32
121
+ block_N = 128
122
+ block_K = 128
123
+
124
+ @T.prim_func
125
+ def fp8_gemm_kernel_(
126
+ A: T.Tensor[(M, K), FP8],
127
+ B: T.Tensor[(N, K), FP8],
128
+ C: T.Tensor[(M, N), out_dtype],
129
+ scales_a: T.Tensor[(M, T.ceildiv(K, group_size)), FP32],
130
+ scales_b: T.Tensor[(T.ceildiv(N, group_size), T.ceildiv(K, group_size)), FP32],
131
+ ):
132
+ with T.Kernel(T.ceildiv(N, block_N), T.ceildiv(M, block_M), threads=128) as (
133
+ bx,
134
+ by,
135
+ ):
136
+ A_shared = T.alloc_shared((block_M, block_K), FP8)
137
+ B_shared = T.alloc_shared((block_N, block_K), FP8)
138
+ C_shared = T.alloc_shared((block_M, block_N), out_dtype)
139
+ Scale_C_shared = T.alloc_shared((block_M), FP32)
140
+ C_local = T.alloc_fragment((block_M, block_N), accum_dtype)
141
+ C_local_accum = T.alloc_fragment((block_M, block_N), accum_dtype)
142
+
143
+ # Improve L2 Cache
144
+ T.use_swizzle(panel_size=10)
145
+
146
+ T.clear(C_local)
147
+ T.clear(C_local_accum)
148
+ K_iters = T.ceildiv(K, block_K)
149
+ for k in T.Pipelined(K_iters, num_stages=4):
150
+ # Load A into shared memory
151
+ T.copy(A[by * block_M, k * block_K], A_shared)
152
+ # Load B into shared memory
153
+ T.copy(B[bx * block_N, k * block_K], B_shared)
154
+ # Load scale into shared memory
155
+ Scale_B = scales_b[bx * block_N // group_size, k]
156
+ for i in T.Parallel(block_M):
157
+ Scale_C_shared[i] = scales_a[by * block_M + i, k] * Scale_B
158
+
159
+ T.gemm(A_shared, B_shared, C_local, transpose_B=True)
160
+ # Promote to enable 2xAcc
161
+ for i, j in T.Parallel(block_M, block_N):
162
+ C_local_accum[i, j] += C_local[i, j] * Scale_C_shared[i]
163
+ T.clear(C_local)
164
+ # TMA store
165
+ T.copy(C_local_accum, C_shared)
166
+ T.copy(C_shared, C[by * block_M, bx * block_N])
167
+
168
+ return fp8_gemm_kernel_
169
+
170
+
171
+ def fp8_gemm(
172
+ a: torch.Tensor, a_s: torch.Tensor, b: torch.Tensor, b_s: torch.Tensor
173
+ ) -> torch.Tensor:
174
+ """
175
+ Perform a matrix multiplication using FP8 precision.
176
+
177
+ Args:
178
+ a (torch.Tensor): The first input matrix, must be contiguous.
179
+ a_s (torch.Tensor): The scaling factor for the first input matrix, must be contiguous.
180
+ b (torch.Tensor): The second input matrix, must be contiguous.
181
+ b_s (torch.Tensor): The scaling factor for the second input matrix, must be contiguous.
182
+
183
+ Returns:
184
+ torch.Tensor: The result of the matrix multiplication.
185
+ """
186
+ assert a.is_contiguous() and b.is_contiguous(), "Input tensors must be contiguous"
187
+ assert a_s.is_contiguous() and b_s.is_contiguous(), (
188
+ "Scaling factor tensors must be contiguous"
189
+ )
190
+ K = a.size(-1)
191
+ M = a.numel() // K
192
+ N = b.size(0)
193
+ c = a.new_empty(*a.size()[:-1], N, dtype=torch.get_default_dtype())
194
+ kernel = fp8_gemm_kernel(N, K)
195
+ kernel(a.view(M, K), b, c.view(M, N), a_s.view(M, -1), b_s)
196
+ return c
197
+
198
+
199
+ @tilelang.jit(out_idx=[4], pass_configs=pass_configs)
200
+ def fp8_index_kernel(h: int, d: int):
201
+ b = T.symbolic("b")
202
+ m = T.symbolic("m")
203
+ n = T.symbolic("n")
204
+
205
+ blk_n1 = 512
206
+ blk_n2 = 128
207
+
208
+ @T.prim_func
209
+ def fp8_index_kernel_(
210
+ q: T.Tensor[(b, m, h, d), FP8],
211
+ q_s: T.Tensor[(b, m, h), FP32],
212
+ k: T.Tensor[(b, n, d), FP8],
213
+ k_s: T.Tensor[(b, n), FP32],
214
+ o: T.Tensor[(b, m, n), FP32],
215
+ ) -> None:
216
+ with T.Kernel(b, m, T.ceildiv(n, blk_n1)) as (i_b, i_m, i1_n):
217
+ q_smem = T.alloc_shared((h, d), FP8)
218
+ T.copy(q[i_b, i_m, 0, 0], q_smem)
219
+
220
+ q_s_frag = T.alloc_fragment(h, FP32)
221
+ T.copy(q_s[i_b, i_m, 0], q_s_frag)
222
+
223
+ for i2_n in T.Pipelined(blk_n1 // blk_n2, num_stages=2):
224
+ k_smem = T.alloc_shared((blk_n2, d), FP8)
225
+ T.copy(k[i_b, i1_n * blk_n1 + i2_n * blk_n2, 0], k_smem)
226
+
227
+ k_s_frag = T.alloc_fragment(blk_n2, FP32)
228
+ T.copy(k_s[i_b, i1_n * blk_n1 + i2_n * blk_n2], k_s_frag)
229
+
230
+ logits = T.alloc_fragment((blk_n2, h), FP32)
231
+ T.gemm(
232
+ k_smem,
233
+ q_smem,
234
+ logits,
235
+ transpose_A=False,
236
+ transpose_B=True,
237
+ clear_accum=True,
238
+ )
239
+
240
+ for i_h, i3_n in T.Parallel(h, blk_n2):
241
+ logits[i3_n, i_h] = T.max(logits[i3_n, i_h], 0) * q_s_frag[i_h]
242
+
243
+ logits_sum = T.alloc_fragment(blk_n2, FP32)
244
+ T.reduce_sum(logits, logits_sum, dim=1)
245
+
246
+ for i3_n in T.Parallel(blk_n2):
247
+ logits_sum[i3_n] *= k_s_frag[i3_n]
248
+
249
+ T.copy(logits_sum, o[i_b, i_m, i1_n * blk_n1 + i2_n * blk_n2])
250
+
251
+ return fp8_index_kernel_
252
+
253
+
254
+ def fp8_index(
255
+ q: torch.Tensor,
256
+ q_s: torch.Tensor,
257
+ k: torch.Tensor,
258
+ k_s: torch.Tensor,
259
+ ) -> torch.Tensor:
260
+ """
261
+ Perform index score using FP8 precision.
262
+
263
+ Args:
264
+ q (torch.Tensor): The Q tensor, must be contiguous.
265
+ q_s (torch.Tensor): The scaling factor for Q (float), must be contiguous.
266
+ k (torch.Tensor): The K tensor, must be contiguous.
267
+ k_s (torch.Tensor): The scaling factor for K (e8m0 here), must be contiguous.
268
+
269
+ fp8 q @ fp8 k -> fp32 logits
270
+ relu(fp32 logits) * q_s (weights) -> fp32 logits
271
+ fp32 logits -> fp32 logits_sum
272
+ fp32 logits_sum * k_s (e8m0) -> fp32 index_score
273
+ """
274
+ return fp8_index_kernel(q.shape[2], q.shape[3])(q, q_s, k, k_s)
inference/model.py ADDED
@@ -0,0 +1,822 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import math
2
+ from dataclasses import dataclass
3
+ from typing import Tuple, Optional, Literal
4
+
5
+ import torch
6
+ from torch import nn
7
+ import torch.nn.functional as F
8
+ import torch.distributed as dist
9
+
10
+ from kernel import act_quant, fp8_gemm
11
+
12
+ world_size = 1
13
+ rank = 0
14
+ block_size = 128
15
+
16
+ @dataclass
17
+ class ModelArgs:
18
+ """
19
+ Data class for defining model arguments and hyperparameters.
20
+
21
+ Attributes:
22
+ max_batch_size (int): Maximum batch size.
23
+ max_seq_len (int): Maximum sequence length.
24
+ dtype (Literal["bf16", "fp8"]): Data type for computations.
25
+ scale_fmt (Optional[str]): Format for quantization scale.
26
+ vocab_size (int): Vocabulary size.
27
+ dim (int): Model dimension.
28
+ inter_dim (int): Intermediate dimension for MLP layers.
29
+ moe_inter_dim (int): Intermediate dimension for MoE layers.
30
+ n_layers (int): Number of transformer layers.
31
+ n_dense_layers (int): Number of dense layers in the model.
32
+ n_heads (int): Number of attention heads.
33
+ n_routed_experts (int): Number of routed experts for MoE layers.
34
+ n_shared_experts (int): Number of shared experts for MoE layers.
35
+ n_activated_experts (int): Number of activated experts in MoE layers.
36
+ n_expert_groups (int): Number of expert groups.
37
+ n_limited_groups (int): Number of limited groups for MoE routing.
38
+ score_func (Literal["softmax", "sigmoid"]): Scoring function for MoE routing.
39
+ route_scale (float): Scaling factor for routing scores.
40
+ q_lora_rank (int): LoRA rank for query projections.
41
+ kv_lora_rank (int): LoRA rank for key-value projections.
42
+ qk_nope_head_dim (int): Dimension for query-key projections without positional embeddings.
43
+ qk_rope_head_dim (int): Dimension for query-key projections with rotary embeddings.
44
+ v_head_dim (int): Dimension for value projections.
45
+ original_seq_len (int): Original sequence length.
46
+ rope_theta (float): Base for rotary positional encoding.
47
+ rope_factor (float): Scaling factor for extended sequence lengths.
48
+ beta_fast (int): Fast beta correction factor.
49
+ beta_slow (int): Slow beta correction factor.
50
+ mscale (float): Scaling factor for extended attention.
51
+ """
52
+ max_batch_size: int = 8
53
+ max_seq_len: int = 4096 * 4
54
+ dtype: Literal["bf16", "fp8"] = "bf16"
55
+ scale_fmt: Optional[str] = None
56
+ vocab_size: int = 102400
57
+ dim: int = 2048
58
+ inter_dim: int = 10944
59
+ moe_inter_dim: int = 1408
60
+ n_layers: int = 27
61
+ n_dense_layers: int = 1
62
+ n_heads: int = 16
63
+ # moe
64
+ n_routed_experts: int = 64
65
+ n_shared_experts: int = 2
66
+ n_activated_experts: int = 6
67
+ n_expert_groups: int = 1
68
+ n_limited_groups: int = 1
69
+ score_func: Literal["softmax", "sigmoid"] = "softmax"
70
+ route_scale: float = 1.
71
+ # mla
72
+ q_lora_rank: int = 0
73
+ kv_lora_rank: int = 512
74
+ qk_nope_head_dim: int = 128
75
+ qk_rope_head_dim: int = 64
76
+ v_head_dim: int = 128
77
+ # yarn
78
+ original_seq_len: int = 4096
79
+ rope_theta: float = 10000.0
80
+ rope_factor: float = 40
81
+ beta_fast: int = 32
82
+ beta_slow: int = 1
83
+ mscale: float = 1.
84
+
85
+
86
+ class ParallelEmbedding(nn.Module):
87
+ """
88
+ Embedding layer with parallelism support across distributed processes.
89
+
90
+ Args:
91
+ vocab_size (int): Vocabulary size.
92
+ dim (int): Embedding dimension.
93
+ """
94
+ def __init__(self, vocab_size: int, dim: int):
95
+ super().__init__()
96
+ self.vocab_size = vocab_size
97
+ self.dim = dim
98
+ assert vocab_size % world_size == 0, f"Vocabulary size must be divisible by world size (world_size={world_size})"
99
+ self.part_vocab_size = (vocab_size // world_size)
100
+ self.vocab_start_idx = rank * self.part_vocab_size
101
+ self.vocab_end_idx = self.vocab_start_idx + self.part_vocab_size
102
+ self.weight = nn.Parameter(torch.empty(self.part_vocab_size, self.dim))
103
+
104
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
105
+ """
106
+ Forward pass for parallel embedding layer.
107
+
108
+ Args:
109
+ x (torch.Tensor): Input tensor containing token indices.
110
+
111
+ Returns:
112
+ torch.Tensor: Embedded representations.
113
+
114
+ Raises:
115
+ ValueError: If `world_size` is not defined.
116
+ """
117
+ if world_size > 1:
118
+ mask = (x < self.vocab_start_idx) | (x >= self.vocab_end_idx)
119
+ x = x - self.vocab_start_idx
120
+ x[mask] = 0
121
+ y = F.embedding(x, self.weight)
122
+ if world_size > 1:
123
+ y[mask] = 0
124
+ dist.all_reduce(y)
125
+ return y
126
+
127
+
128
+ def linear(x: torch.Tensor, weight: torch.Tensor, bias: Optional[torch.Tensor] = None,
129
+ scale_fmt: Optional[str] = None) -> torch.Tensor:
130
+ """
131
+ Applies a linear transformation to the incoming data: y = xA^T + b.
132
+ This function supports specialized implementations based on quantization
133
+ and tensor formats.
134
+
135
+ Args:
136
+ x (torch.Tensor): The input tensor.
137
+ weight (torch.Tensor): The weight tensor. It may be quantized and
138
+ requires dequantization for certain cases.
139
+ bias (Optional[torch.Tensor]): The bias tensor to be added. Default is None.
140
+ scale_fmt (Optional[str]): The format of scaling factors.
141
+
142
+ Returns:
143
+ torch.Tensor: The result of the linear transformation, which may involve
144
+ quantization-aware computations depending on the input parameters.
145
+
146
+ Notes:
147
+ - If `weight` is quantized (e.g., `element_size() == 1`), a dequantized version
148
+ is used for computation.
149
+ - For other cases, the function applies quantization to `x` and uses `fp8_gemm` for computation.
150
+ """
151
+ assert bias is None
152
+
153
+ if weight.dtype != torch.float8_e4m3fn:
154
+ return F.linear(x, weight)
155
+ else:
156
+ x, scale = act_quant(x, block_size, scale_fmt)
157
+ return fp8_gemm(x, scale, weight, weight.scale)
158
+
159
+
160
+ class Linear(nn.Module):
161
+ """
162
+ Custom linear layer with support for quantized weights and optional bias.
163
+
164
+ Args:
165
+ in_features (int): Number of input features.
166
+ out_features (int): Number of output features.
167
+ bias (bool): Whether to include a bias term. Defaults to False.
168
+ dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`.
169
+ """
170
+ dtype = torch.bfloat16
171
+ scale_fmt: Optional[str] = None
172
+
173
+ def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None):
174
+ super().__init__()
175
+ self.in_features = in_features
176
+ self.out_features = out_features
177
+ self.weight = nn.Parameter(torch.empty(out_features, in_features, dtype=dtype or Linear.dtype))
178
+ if self.weight.element_size() == 1:
179
+ scale_out_features = (out_features + block_size - 1) // block_size
180
+ scale_in_features = (in_features + block_size - 1) // block_size
181
+ self.weight.scale = self.scale = nn.Parameter(torch.empty(scale_out_features, scale_in_features, dtype=torch.float32))
182
+ else:
183
+ self.register_parameter("scale", None)
184
+ if bias:
185
+ self.bias = nn.Parameter(torch.empty(out_features))
186
+ else:
187
+ self.register_parameter("bias", None)
188
+
189
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
190
+ """
191
+ Forward pass for the custom linear layer.
192
+
193
+ Args:
194
+ x (torch.Tensor): Input tensor.
195
+
196
+ Returns:
197
+ torch.Tensor: Transformed tensor after linear computation.
198
+ """
199
+ return linear(x, self.weight, self.bias, self.scale_fmt)
200
+
201
+
202
+ class ColumnParallelLinear(Linear):
203
+ """
204
+ Linear layer with column parallelism, splitting output features across distributed processes.
205
+
206
+ Args:
207
+ in_features (int): Number of input features.
208
+ out_features (int): Total number of output features.
209
+ bias (bool): Whether to include a bias term. Defaults to False.
210
+ dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`.
211
+ """
212
+ def __init__(self, in_features: int, out_features: int, bias: bool = False, dtype = None):
213
+ assert out_features % world_size == 0, f"Output features must be divisible by world size (world_size={world_size})"
214
+ self.part_out_features = out_features // world_size
215
+ super().__init__(in_features, self.part_out_features, bias, dtype)
216
+
217
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
218
+ """
219
+ Forward pass for column parallel linear layer.
220
+
221
+ Args:
222
+ x (torch.Tensor): Input tensor.
223
+
224
+ Returns:
225
+ torch.Tensor: Transformed tensor with column-parallel computation.
226
+ """
227
+ y = linear(x, self.weight, self.bias, self.scale_fmt)
228
+ return y
229
+
230
+
231
+ class RowParallelLinear(Linear):
232
+ """
233
+ Linear layer with row parallelism, splitting input features across distributed processes.
234
+
235
+ Args:
236
+ in_features (int): Total number of input features.
237
+ out_features (int): Number of output features.
238
+ bias (bool): Whether to include a bias term. Defaults to False.
239
+ dtype (optional): Data type for the layer. Defaults to `torch.bfloat16`.
240
+ """
241
+ def __init__(self, in_features: int, out_features: int, bias: bool = False, reduce_output = True, dtype = None):
242
+ assert in_features % world_size == 0, f"Input features must be divisible by world size (world_size={world_size})"
243
+ self.part_in_features = in_features // world_size
244
+ self.reduce_output = reduce_output
245
+ super().__init__(self.part_in_features, out_features, bias, dtype)
246
+
247
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
248
+ """
249
+ Forward pass for row parallel linear layer.
250
+
251
+ Args:
252
+ x (torch.Tensor): Input tensor.
253
+
254
+ Returns:
255
+ torch.Tensor: Transformed tensor with row-parallel computation.
256
+ """
257
+ y = linear(x, self.weight, None, self.scale_fmt)
258
+ if self.reduce_output and world_size > 1:
259
+ y = y.float()
260
+ dist.all_reduce(y)
261
+ if self.bias is not None:
262
+ y += self.bias
263
+ return y.type_as(x)
264
+
265
+
266
+ class RMSNorm(nn.Module):
267
+ """
268
+ Root Mean Square Layer Normalization (RMSNorm).
269
+
270
+ Args:
271
+ dim (int): Dimension of the input tensor.
272
+ eps (float): Epsilon value for numerical stability. Defaults to 1e-6.
273
+ """
274
+ def __init__(self, dim: int, eps: float = 1e-6):
275
+ super().__init__()
276
+ self.dim = dim
277
+ self.eps = eps
278
+ self.weight = nn.Parameter(torch.ones(dim, dtype=torch.float32))
279
+
280
+ def forward(self, x: torch.Tensor, residual: Optional[torch.Tensor] = None):
281
+ """
282
+ Forward pass for RMSNorm.
283
+
284
+ Args:
285
+ x (torch.Tensor): Input tensor.
286
+
287
+ Returns:
288
+ torch.Tensor: Normalized tensor with the same shape as input.
289
+ """
290
+ dtype = x.dtype
291
+ if residual is None:
292
+ x = x.float()
293
+ var = x.pow(2).mean(-1, keepdim=True)
294
+ x = x * torch.rsqrt(var + self.eps)
295
+ return (self.weight * x).to(dtype)
296
+ else:
297
+ x = residual = x.float() + residual.float()
298
+ var = x.pow(2).mean(-1, keepdim=True)
299
+ x = x * torch.rsqrt(var + self.eps)
300
+ return (self.weight * x).to(dtype), residual.to(dtype)
301
+
302
+
303
+ def precompute_freqs_cis(args: ModelArgs) -> torch.Tensor:
304
+ """
305
+ Precomputes frequency-based complex exponential values for rotary positional embeddings.
306
+
307
+ Args:
308
+ args (ModelArgs): Model arguments containing positional embedding parameters.
309
+
310
+ Returns:
311
+ torch.Tensor: Precomputed complex exponential values for positional embeddings.
312
+ """
313
+ dim = args.qk_rope_head_dim
314
+ seqlen = args.max_seq_len
315
+ beta_fast = args.beta_fast
316
+ beta_slow = args.beta_slow
317
+ base = args.rope_theta
318
+ factor = args.rope_factor
319
+
320
+ def find_correction_dim(num_rotations, dim, base, max_seq_len):
321
+ """
322
+ Computes the correction dimension for a given number of rotations in the rotary positional embedding.
323
+
324
+ Args:
325
+ num_rotations (float): Number of rotations to compute the correction for.
326
+ dim (int): Dimensionality of the embedding space.
327
+ base (float): Base value for the exponential computation.
328
+ max_seq_len (int): Maximum sequence length.
329
+
330
+ Returns:
331
+ float: The correction dimension based on the input parameters.
332
+ """
333
+ return dim * math.log(max_seq_len / (num_rotations * 2 * math.pi)) / (2 * math.log(base))
334
+
335
+ def find_correction_range(low_rot, high_rot, dim, base, max_seq_len):
336
+ """
337
+ Computes the range of correction dimensions for rotary positional embeddings.
338
+
339
+ Args:
340
+ low_rot (float): Lower bound for the number of rotations.
341
+ high_rot (float): Upper bound for the number of rotations.
342
+ dim (int): Dimensionality of the embedding space.
343
+ base (float): Base value for the exponential computation.
344
+ max_seq_len (int): Maximum sequence length.
345
+
346
+ Returns:
347
+ Tuple[int, int]: The range of correction dimensions (low, high), clamped to valid indices.
348
+ """
349
+ low = math.floor(find_correction_dim(low_rot, dim, base, max_seq_len))
350
+ high = math.ceil(find_correction_dim(high_rot, dim, base, max_seq_len))
351
+ return max(low, 0), min(high, dim-1)
352
+
353
+ def linear_ramp_factor(min, max, dim):
354
+ """
355
+ Computes a linear ramp function used to smooth values between a minimum and maximum range.
356
+
357
+ Args:
358
+ min (float): Minimum value for the ramp function.
359
+ max (float): Maximum value for the ramp function.
360
+ dim (int): Dimensionality of the ramp tensor.
361
+
362
+ Returns:
363
+ torch.Tensor: A tensor of shape (dim,) with values linearly interpolated between 0 and 1,
364
+ clamped to the range [0, 1].
365
+ """
366
+ if min == max:
367
+ max += 0.001
368
+ linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
369
+ ramp_func = torch.clamp(linear_func, 0, 1)
370
+ return ramp_func
371
+
372
+ freqs = 1.0 / (base ** (torch.arange(0, dim, 2, dtype=torch.float32) / dim))
373
+ if seqlen > args.original_seq_len:
374
+ low, high = find_correction_range(beta_fast, beta_slow, dim, base, args.original_seq_len)
375
+ smooth = 1 - linear_ramp_factor(low, high, dim // 2)
376
+ freqs = freqs / factor * (1 - smooth) + freqs * smooth
377
+
378
+ t = torch.arange(seqlen)
379
+ freqs = torch.outer(t, freqs)
380
+ freqs_cis = torch.polar(torch.ones_like(freqs), freqs)
381
+ return freqs_cis
382
+
383
+
384
+ def apply_rotary_emb(x: torch.Tensor, freqs_cis: torch.Tensor) -> torch.Tensor:
385
+ """
386
+ Applies rotary positional embeddings to the input tensor.
387
+
388
+ Args:
389
+ x (torch.Tensor): Input tensor with positional embeddings to be applied.
390
+ freqs_cis (torch.Tensor): Precomputed complex exponential values for positional embeddings.
391
+
392
+ Returns:
393
+ torch.Tensor: Tensor with rotary embeddings applied.
394
+ """
395
+ dtype = x.dtype
396
+ x = torch.view_as_complex(x.float().view(*x.shape[:-1], -1, 2))
397
+ freqs_cis = freqs_cis.view(1, x.size(1), 1, x.size(-1))
398
+ y = torch.view_as_real(x * freqs_cis).flatten(3)
399
+ return y.to(dtype)
400
+
401
+
402
+ def weight_dequant(weight, scale):
403
+ original_shape = weight.shape
404
+ assert weight.dim() == 2
405
+ weight = weight.view(original_shape[0] // block_size, block_size, original_shape[1] // block_size, block_size).transpose(1, 2).contiguous().view(-1, block_size * block_size)
406
+ weight = (weight.float() * scale.view(-1, 1).float()).to(torch.get_default_dtype()).view(original_shape[0] // block_size, original_shape[1] // block_size, block_size, block_size).transpose(1, 2).contiguous().view(original_shape)
407
+ return weight
408
+
409
+
410
+ class MLA(nn.Module):
411
+ """
412
+ Multi-Head Latent Attention (MLA) Layer.
413
+
414
+ Attributes:
415
+ dim (int): Dimensionality of the input features.
416
+ n_heads (int): Number of attention heads.
417
+ n_local_heads (int): Number of local attention heads for distributed systems.
418
+ q_lora_rank (int): Rank for low-rank query projection.
419
+ kv_lora_rank (int): Rank for low-rank key/value projection.
420
+ qk_nope_head_dim (int): Dimensionality of non-positional query/key projections.
421
+ qk_rope_head_dim (int): Dimensionality of rotary-positional query/key projections.
422
+ qk_head_dim (int): Total dimensionality of query/key projections.
423
+ v_head_dim (int): Dimensionality of value projections.
424
+ softmax_scale (float): Scaling factor for softmax in attention computation.
425
+ """
426
+ def __init__(self, args: ModelArgs):
427
+ super().__init__()
428
+ self.dim = args.dim
429
+ self.n_heads = args.n_heads
430
+ self.n_local_heads = args.n_heads // world_size
431
+ self.q_lora_rank = args.q_lora_rank
432
+ self.kv_lora_rank = args.kv_lora_rank
433
+ self.qk_nope_head_dim = args.qk_nope_head_dim
434
+ self.qk_rope_head_dim = args.qk_rope_head_dim
435
+ self.qk_head_dim = args.qk_nope_head_dim + args.qk_rope_head_dim
436
+ self.v_head_dim = args.v_head_dim
437
+
438
+ if self.q_lora_rank == 0:
439
+ self.wq = ColumnParallelLinear(self.dim, self.n_heads * self.qk_head_dim)
440
+ else:
441
+ self.wq_a = Linear(self.dim, self.q_lora_rank)
442
+ self.q_norm = RMSNorm(self.q_lora_rank)
443
+ self.wq_b = ColumnParallelLinear(self.q_lora_rank, self.n_heads * self.qk_head_dim)
444
+ self.wkv_a = Linear(self.dim, self.kv_lora_rank + self.qk_rope_head_dim)
445
+ self.kv_norm = RMSNorm(self.kv_lora_rank)
446
+ self.wkv_b = ColumnParallelLinear(self.kv_lora_rank, self.n_heads * (self.qk_nope_head_dim + self.v_head_dim))
447
+ self.wo = RowParallelLinear(self.n_heads * self.v_head_dim, self.dim)
448
+ self.softmax_scale = self.qk_head_dim ** -0.5
449
+ if args.max_seq_len > args.original_seq_len:
450
+ mscale = 0.1 * args.mscale * math.log(args.rope_factor) + 1.0
451
+ self.softmax_scale = self.softmax_scale * mscale * mscale
452
+
453
+ self.register_buffer("kv_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.kv_lora_rank), persistent=False)
454
+ self.register_buffer("pe_cache", torch.zeros(args.max_batch_size, args.max_seq_len, self.qk_rope_head_dim), persistent=False)
455
+ self.dequant_wkv_b = None
456
+
457
+ def forward(self, x: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]):
458
+ """
459
+ Forward pass for the Multi-Head Latent Attention (MLA) Layer.
460
+
461
+ Args:
462
+ x (torch.Tensor): Input tensor of shape (batch_size, seq_len, dim).
463
+ start_pos (int): Starting position in the sequence for caching.
464
+ freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings.
465
+ mask (Optional[torch.Tensor]): Mask tensor to exclude certain positions from attention.
466
+
467
+ Returns:
468
+ torch.Tensor: Output tensor with the same shape as the input.
469
+ """
470
+ bsz, seqlen, _ = x.size()
471
+ end_pos = start_pos + seqlen
472
+ if self.q_lora_rank == 0:
473
+ q = self.wq(x)
474
+ else:
475
+ q = self.wq_b(self.q_norm(self.wq_a(x)))
476
+ q = q.view(bsz, seqlen, self.n_local_heads, self.qk_head_dim)
477
+ q_nope, q_pe = torch.split(q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1)
478
+ q_pe = apply_rotary_emb(q_pe, freqs_cis)
479
+ kv = self.wkv_a(x)
480
+ kv, k_pe = torch.split(kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1)
481
+ kv = self.kv_norm(kv)
482
+ k_pe = apply_rotary_emb(k_pe.unsqueeze(2), freqs_cis)
483
+ self.kv_cache[:bsz, start_pos:end_pos] = kv
484
+ self.pe_cache[:bsz, start_pos:end_pos] = k_pe.squeeze(2)
485
+ if mask is not None: # MHA prefill
486
+ q = torch.cat([q_nope, q_pe], dim=-1)
487
+ kv = self.wkv_b(kv)
488
+ kv = kv.view(bsz, seqlen, self.n_local_heads, self.qk_nope_head_dim + self.v_head_dim)
489
+ k_nope, v = torch.split(kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1)
490
+ k = torch.cat([k_nope, k_pe.expand(-1, -1, self.n_local_heads, -1)], dim=-1)
491
+ scores = torch.einsum("bshd,bthd->bsht", q, k) * self.softmax_scale
492
+ scores += mask.unsqueeze(1)
493
+ scores = scores.softmax(dim=-1, dtype=torch.float32)
494
+ x = torch.einsum("bsht,bthd->bshd", scores.type_as(x), v)
495
+ else: # MHA decode
496
+ if self.dequant_wkv_b is None and self.wkv_b.scale is not None:
497
+ self.dequant_wkv_b = weight_dequant(self.wkv_b.weight, self.wkv_b.scale)
498
+ wkv_b = self.wkv_b.weight if self.dequant_wkv_b is None else self.dequant_wkv_b
499
+ wkv_b = wkv_b.view(self.n_local_heads, -1, self.kv_lora_rank)
500
+ q_nope = torch.einsum("bshd,hdc->bshc", q_nope, wkv_b[:, :self.qk_nope_head_dim])
501
+ scores = (torch.einsum("bshc,btc->bsht", q_nope, self.kv_cache[:bsz, :end_pos]) +
502
+ torch.einsum("bshr,btr->bsht", q_pe, self.pe_cache[:bsz, :end_pos])) * self.softmax_scale
503
+ scores = scores.softmax(dim=-1, dtype=torch.float32)
504
+ x = torch.einsum("bsht,btc->bshc", scores.type_as(x), self.kv_cache[:bsz, :end_pos])
505
+ x = torch.einsum("bshc,hdc->bshd", x, wkv_b[:, -self.v_head_dim:])
506
+ x = self.wo(x.flatten(2))
507
+ return x
508
+
509
+
510
+ class MLP(nn.Module):
511
+ """
512
+ Multi-Layer Perceptron (MLP) used as a feed-forward layer.
513
+
514
+ Attributes:
515
+ w1 (nn.Module): Linear layer for input-to-hidden transformation.
516
+ w2 (nn.Module): Linear layer for hidden-to-output transformation.
517
+ w3 (nn.Module): Additional linear layer for feature transformation.
518
+ """
519
+ def __init__(self, dim: int, inter_dim: int, reduce_output: bool = True):
520
+ """
521
+ Initializes the MLP layer.
522
+
523
+ Args:
524
+ dim (int): Input and output dimensionality.
525
+ inter_dim (int): Hidden layer dimensionality.
526
+ """
527
+ super().__init__()
528
+ self.w1 = ColumnParallelLinear(dim, inter_dim)
529
+ self.w2 = RowParallelLinear(inter_dim, dim, reduce_output=reduce_output)
530
+ self.w3 = ColumnParallelLinear(dim, inter_dim)
531
+
532
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
533
+ """
534
+ Forward pass for the MLP layer.
535
+
536
+ Args:
537
+ x (torch.Tensor): Input tensor.
538
+
539
+ Returns:
540
+ torch.Tensor: Output tensor after MLP computation.
541
+ """
542
+ return self.w2((F.silu(self.w1(x).float()) * self.w3(x).float()).type_as(x))
543
+
544
+
545
+ class Gate(nn.Module):
546
+ """
547
+ Gating mechanism for routing inputs in a mixture-of-experts (MoE) model.
548
+
549
+ Attributes:
550
+ dim (int): Dimensionality of input features.
551
+ topk (int): Number of top experts activated for each input.
552
+ n_groups (int): Number of groups for routing.
553
+ topk_groups (int): Number of groups to route inputs to.
554
+ score_func (str): Scoring function ('softmax' or 'sigmoid').
555
+ route_scale (float): Scaling factor for routing weights.
556
+ weight (torch.nn.Parameter): Learnable weights for the gate.
557
+ bias (Optional[torch.nn.Parameter]): Optional bias term for the gate.
558
+ """
559
+ def __init__(self, args: ModelArgs):
560
+ """
561
+ Initializes the Gate module.
562
+
563
+ Args:
564
+ args (ModelArgs): Model arguments containing gating parameters.
565
+ """
566
+ super().__init__()
567
+ self.dim = args.dim
568
+ self.topk = args.n_activated_experts
569
+ self.n_groups = args.n_expert_groups
570
+ self.topk_groups = args.n_limited_groups
571
+ self.score_func = args.score_func
572
+ self.route_scale = args.route_scale
573
+ self.weight = nn.Parameter(torch.empty(args.n_routed_experts, args.dim))
574
+ self.bias = nn.Parameter(torch.empty(args.n_routed_experts, dtype=torch.float32)) if self.dim == 7168 else None
575
+
576
+ def forward(self, x: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
577
+ """
578
+ Forward pass for the gating mechanism.
579
+
580
+ Args:
581
+ x (torch.Tensor): Input tensor.
582
+
583
+ Returns:
584
+ Tuple[torch.Tensor, torch.Tensor]: Routing weights and selected expert indices.
585
+ """
586
+ scores = linear(x.float(), self.weight.float())
587
+ if self.score_func == "softmax":
588
+ scores = scores.softmax(dim=-1)
589
+ else:
590
+ scores = scores.sigmoid()
591
+ original_scores = scores
592
+ if self.bias is not None:
593
+ scores = scores + self.bias
594
+ if self.n_groups > 1:
595
+ scores = scores.view(x.size(0), self.n_groups, -1)
596
+ if self.bias is None:
597
+ group_scores = scores.amax(dim=-1)
598
+ else:
599
+ group_scores = scores.topk(2, dim=-1)[0].sum(dim=-1)
600
+ indices = group_scores.topk(self.topk_groups, dim=-1)[1]
601
+ mask = scores.new_ones(x.size(0), self.n_groups, dtype=bool).scatter_(1, indices, False)
602
+ scores = scores.masked_fill_(mask.unsqueeze(-1), float("-inf")).flatten(1)
603
+ indices = scores.topk(self.topk, dim=-1)[1]
604
+ weights = original_scores.gather(1, indices)
605
+ if self.score_func == "sigmoid":
606
+ weights /= weights.sum(dim=-1, keepdim=True)
607
+ weights *= self.route_scale
608
+ return weights, indices
609
+
610
+
611
+ class Expert(nn.Module):
612
+ """
613
+ Expert layer for Mixture-of-Experts (MoE) models.
614
+
615
+ Attributes:
616
+ w1 (nn.Module): Linear layer for input-to-hidden transformation.
617
+ w2 (nn.Module): Linear layer for hidden-to-output transformation.
618
+ w3 (nn.Module): Additional linear layer for feature transformation.
619
+ """
620
+ def __init__(self, dim: int, inter_dim: int):
621
+ """
622
+ Initializes the Expert layer.
623
+
624
+ Args:
625
+ dim (int): Input and output dimensionality.
626
+ inter_dim (int): Hidden layer dimensionality.
627
+ """
628
+ super().__init__()
629
+ self.w1 = Linear(dim, inter_dim)
630
+ self.w2 = Linear(inter_dim, dim)
631
+ self.w3 = Linear(dim, inter_dim)
632
+
633
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
634
+ """
635
+ Forward pass for the Expert layer.
636
+
637
+ Args:
638
+ x (torch.Tensor): Input tensor.
639
+
640
+ Returns:
641
+ torch.Tensor: Output tensor after expert computation.
642
+ """
643
+ return self.w2((F.silu(self.w1(x).float()) * self.w3(x).float()).type_as(x))
644
+
645
+
646
+ class MoE(nn.Module):
647
+ """
648
+ Mixture-of-Experts (MoE) module.
649
+
650
+ Attributes:
651
+ dim (int): Dimensionality of input features.
652
+ n_routed_experts (int): Total number of experts in the model.
653
+ n_local_experts (int): Number of experts handled locally in distributed systems.
654
+ n_activated_experts (int): Number of experts activated for each input.
655
+ gate (nn.Module): Gating mechanism to route inputs to experts.
656
+ experts (nn.ModuleList): List of expert modules.
657
+ shared_experts (nn.Module): Shared experts applied to all inputs.
658
+ """
659
+ def __init__(self, args: ModelArgs):
660
+ """
661
+ Initializes the MoE module.
662
+
663
+ Args:
664
+ args (ModelArgs): Model arguments containing MoE parameters.
665
+ """
666
+ super().__init__()
667
+ self.dim = args.dim
668
+ assert args.n_routed_experts % world_size == 0, f"Number of experts must be divisible by world size (world_size={world_size})"
669
+ self.n_routed_experts = args.n_routed_experts
670
+ self.n_local_experts = args.n_routed_experts // world_size
671
+ self.n_activated_experts = args.n_activated_experts
672
+ self.experts_start_idx = rank * self.n_local_experts
673
+ self.experts_end_idx = self.experts_start_idx + self.n_local_experts
674
+ self.gate = Gate(args)
675
+ self.experts = nn.ModuleList([Expert(args.dim, args.moe_inter_dim) if self.experts_start_idx <= i < self.experts_end_idx else None
676
+ for i in range(self.n_routed_experts)])
677
+ self.shared_experts = MLP(args.dim, args.n_shared_experts * args.moe_inter_dim, reduce_output=False)
678
+
679
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
680
+ """
681
+ Forward pass for the MoE module.
682
+
683
+ Args:
684
+ x (torch.Tensor): Input tensor.
685
+
686
+ Returns:
687
+ torch.Tensor: Output tensor after expert routing and computation.
688
+ """
689
+ shape = x.size()
690
+ x = x.view(-1, self.dim)
691
+ weights, indices = self.gate(x)
692
+ y = torch.zeros_like(x, dtype=torch.float32)
693
+ counts = torch.bincount(indices.flatten(), minlength=self.n_routed_experts).tolist()
694
+ for i in range(self.experts_start_idx, self.experts_end_idx):
695
+ if counts[i] == 0:
696
+ continue
697
+ expert = self.experts[i]
698
+ idx, top = torch.where(indices == i)
699
+ y[idx] += expert(x[idx]) * weights[idx, top, None]
700
+ y += self.shared_experts(x)
701
+ if world_size > 1:
702
+ dist.all_reduce(y)
703
+ return y.type_as(x).view(shape)
704
+
705
+
706
+ class Block(nn.Module):
707
+ """
708
+ Transformer block combining attention and feed-forward layers.
709
+
710
+ Attributes:
711
+ attn (nn.Module): Attention layer (MLA).
712
+ ffn (nn.Module): Feed-forward network (MLP or MoE).
713
+ attn_norm (nn.Module): Layer normalization for attention.
714
+ ffn_norm (nn.Module): Layer normalization for feed-forward network.
715
+ """
716
+ def __init__(self, layer_id: int, args: ModelArgs):
717
+ """
718
+ Initializes the Transformer block.
719
+
720
+ Args:
721
+ layer_id (int): Layer index in the transformer.
722
+ args (ModelArgs): Model arguments containing block parameters.
723
+ """
724
+ super().__init__()
725
+ self.attn = MLA(args)
726
+ self.ffn = MLP(args.dim, args.inter_dim) if layer_id < args.n_dense_layers else MoE(args)
727
+ self.attn_norm = RMSNorm(args.dim)
728
+ self.ffn_norm = RMSNorm(args.dim)
729
+
730
+ def forward(self, x: torch.Tensor, residual: torch.Tensor, start_pos: int, freqs_cis: torch.Tensor, mask: Optional[torch.Tensor]) -> torch.Tensor:
731
+ """
732
+ Forward pass for the Transformer block.
733
+
734
+ Args:
735
+ x (torch.Tensor): Input tensor.
736
+ start_pos (int): Starting position in the sequence.
737
+ freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings.
738
+ mask (Optional[torch.Tensor]): Mask tensor to exclude certain positions from attention.
739
+
740
+ Returns:
741
+ torch.Tensor: Output tensor after block computation.
742
+ """
743
+ if residual is None:
744
+ x, residual = self.attn_norm(x), x
745
+ else:
746
+ x, residual = self.attn_norm(x, residual)
747
+ x = self.attn(x, start_pos, freqs_cis, mask)
748
+ x, residual = self.ffn_norm(x, residual)
749
+ x = self.ffn(x)
750
+ return x, residual
751
+
752
+
753
+ class Transformer(nn.Module):
754
+ """
755
+ Transformer model with positional embeddings, multiple layers, and output projection.
756
+
757
+ Attributes:
758
+ max_seq_len (int): Maximum sequence length for the transformer.
759
+ embed (nn.Module): Embedding layer for input tokens.
760
+ layers (torch.nn.ModuleList): List of transformer blocks.
761
+ norm (nn.Module): Layer normalization applied after all blocks.
762
+ head (nn.Module): Output projection layer mapping to vocabulary size.
763
+ freqs_cis (torch.Tensor): Precomputed complex exponential values for rotary embeddings.
764
+ """
765
+ def __init__(self, args: ModelArgs):
766
+ """
767
+ Initializes the Transformer model.
768
+
769
+ Args:
770
+ args (ModelArgs): Model arguments containing transformer parameters.
771
+ """
772
+ global world_size, rank
773
+ world_size = dist.get_world_size() if dist.is_initialized() else 1
774
+ rank = dist.get_rank() if dist.is_initialized() else 0
775
+ Linear.dtype = torch.float8_e4m3fn if args.dtype == "fp8" else torch.bfloat16
776
+ Linear.scale_fmt = args.scale_fmt
777
+ super().__init__()
778
+ self.max_seq_len = args.max_seq_len
779
+ self.embed = ParallelEmbedding(args.vocab_size, args.dim)
780
+ self.layers = torch.nn.ModuleList()
781
+ for layer_id in range(args.n_layers):
782
+ self.layers.append(Block(layer_id, args))
783
+ self.norm = RMSNorm(args.dim)
784
+ # lm_head in the checkpoint is stored in bf16, while the parameter here is stored in fp32 for easier computation of logits later.
785
+ self.head = ColumnParallelLinear(args.dim, args.vocab_size, dtype=torch.float32)
786
+ self.register_buffer("freqs_cis", precompute_freqs_cis(args), persistent=False)
787
+
788
+ @torch.inference_mode()
789
+ def forward(self, tokens: torch.Tensor, start_pos: int = 0):
790
+ """
791
+ Forward pass for the Transformer model.
792
+
793
+ Args:
794
+ tokens (torch.Tensor): Input tensor of token IDs with shape (batch_size, seq_len).
795
+ start_pos (int, optional): Starting position in the sequence for rotary embeddings. Defaults to 0.
796
+
797
+ Returns:
798
+ torch.Tensor: Logits tensor of shape (batch_size, vocab_size).
799
+ """
800
+ seqlen = tokens.size(1)
801
+ freqs_cis = self.freqs_cis[start_pos:start_pos+seqlen]
802
+ mask = torch.full((seqlen, seqlen), float("-inf"), device=tokens.device).triu_(1) if seqlen > 1 else None
803
+ h, residual = self.embed(tokens), None
804
+ for layer in self.layers:
805
+ h, residual = layer(h, residual, start_pos, freqs_cis, mask)
806
+ h, _ = self.norm(h, residual)
807
+ logits = self.head(h[:, -1].float())
808
+ if world_size > 1:
809
+ all_logits = [torch.empty_like(logits) for _ in range(world_size)]
810
+ dist.all_gather(all_logits, logits)
811
+ logits = torch.cat(all_logits, dim=-1)
812
+ return logits
813
+
814
+
815
+ if __name__ == "__main__":
816
+ torch.set_default_dtype(torch.bfloat16)
817
+ torch.set_default_device("cuda")
818
+ torch.manual_seed(0)
819
+ args = ModelArgs()
820
+ x = torch.randint(0, args.vocab_size, (2, 128))
821
+ model = Transformer(args)
822
+ print(model(x).size())
inference/requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ torch
2
+ transformers
3
+ safetensors
4
+ tilelang==0.1.6.post1
model-00001-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6140e58b5e9c4c2bded0b7a5c13c1a5601eeda5977b4d1d85c63be4fde00c48d
3
+ size 5234241729
model-00002-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:18056b701a75d11ec123573be29414222c22b1b7b64f814d98ec03df739a7030
3
+ size 4302383966
model-00003-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:833116dc799a750eddb0970d50d405a3fc65c3feaff23323fee5a8d7e92ae7ad
3
+ size 4302384375
model-00004-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69efff813da01cca14d97f4f0a9629da7c9dfb3d0517290e4b4a063ab0c24ce2
3
+ size 4302382760
model-00005-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:83dd2b06fc9a1c507b30715fc5930a09be483d004afc0a1b9080ae4f4b1de08b
3
+ size 4302384154
model-00006-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b1641062ff86a782238632431b038047e9e2a909573fa04e6b20bd613dde5b70
3
+ size 4372106366
model-00007-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27a947b03266f71f9b01b25fd007ee0a5b5ca97271ee4abb60e8f2da22de9f41
3
+ size 4306080097
model-00008-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b8f219fc5097f1c7ae9bd74d9128a9d631141d79541e3c3ffc040845b7a70b9f
3
+ size 4302384356
model-00009-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a506e0a8ba37b780e4b2c6cb8f339006ead6b1661463e226a3e9405fcbbe1aec
3
+ size 4302382954
model-00010-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:87e6176a77199fba2f9418d7549f0a1da111585909ed482d2f7a1598bce08aad
3
+ size 4302383960
model-00011-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:548c7ce458921ac0707cbfe8a4483caf82b39c485cfd69ab49cca0de393d221e
3
+ size 4302384375
model-00012-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4bb6adeb76bbf794e90d3f04ca5289b77b5a4b5c28b01ebe9d98a839b0d6fa17
3
+ size 1321612611
model-00013-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c657d8f1cceb557dce5459e4635dc77cb0c04fdaaecdfa318729aae66e238ad0
3
+ size 4302321338
model-00014-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:0897fca2011cc006cfbf131b1a7edc5b7455af82b735ed775d5f5072e3a41edd
3
+ size 4302384328
model-00015-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:469d5a28be557bcc8f4d328bbc9670093a2f059590f486c5d1919ded3fe2b7f0
3
+ size 4302382982
model-00016-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4ff6716edb896cefa13c32e420f9787c56ab46a4fe9fa1875a95f640e5615e8
3
+ size 4302383932
model-00017-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff57950923a935810125b6358b3c8eed9351570a8acbaeaae61cb653eb166d8f
3
+ size 4302384377
model-00018-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:57640babbb9ea00fdc9e0535e808cbf0d526276d23793da579b1b8f9ca379dd8
3
+ size 4302382790
model-00019-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:74c2b80c31d669d196476d5100c297b76d66a1a3a50f2347685a957c944eff4a
3
+ size 4302384124
model-00020-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a263cbffb7de55356fd0ea86b7a72fefe1cda9333ae7f3ed99f372f8f799ad82
3
+ size 4302384377
model-00021-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4abd53c1f91fa62538bd8ce4ae2042cd3637032bf2ce8970c8f7329314a6c1c3
3
+ size 4302383177
model-00022-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f6201c60219f93a8f9cbad1a26315bb9d47cc730f937fe3974c4822a61a61d66
3
+ size 4302384900
model-00023-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3dcfaeb9a21afdc824b745e0cabb52d2f5fdea7129b04a7b09863af7aea992f1
3
+ size 4302383572
model-00024-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8e3f77ec7623b9237737690970fbe5b30314641c39573f9f82600b7170ec4d27
3
+ size 4302384504
model-00025-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27f060310a2586c53eaf84bdea780e03c69e87f483e113a33f22a3e148c9ec0d
3
+ size 4302384961
model-00026-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba9d0b302fa7a5f8132ba634fdbc05931e0770c9369eccf3eeec99bab171ee1c
3
+ size 4302383384
model-00027-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:90763946ff5ba7c5ab8145f0ba0e1155f8ff6123c8762114ce226f52c495b20c
3
+ size 4302384692
model-00028-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:92394afebca8edff5ec040dbd38bc7d9e38d92bb421a86cd6ef29b49d24f394f
3
+ size 4302384963
model-00029-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:77036922f1abda7d779c1787c001540d2cebd57914b703d207a8411a6cac32e6
3
+ size 4302383212
model-00030-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f136b1509d30045c6c0db6dbd44007d90c6836353f93b42e33a925c6e7fe047
3
+ size 4302384884
model-00031-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1a93e7c380c5df0caa2ef52bffb1c1169e7c3dd1b6430d772e8a4ba54e077361
3
+ size 4302383588
model-00032-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:50edb64a3101ad5c67c6faeacdef9dc263094e7d1c21b0ac35f09875798b3380
3
+ size 4302384488
model-00033-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bc08322d21ff7038d0f5e1bba6f9ce9588d75632652beab2636430995a93c81
3
+ size 4302384963
model-00034-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:001cb7d92e64af6d7244abbca174dbe8670a70d35e3eacfe23e690c8fbd7ca38
3
+ size 1747446144
model-00035-of-000163.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f08b2003c703566a172cb8fcf49a994c8902e2f190bcd3833eb763894fc637f8
3
+ size 4302321911
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
modeling_deepseek.py ADDED
@@ -0,0 +1,1848 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2023 DeepSeek-AI and The HuggingFace Inc. team. All rights reserved.
3
+ #
4
+ # This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
5
+ # and OPT implementations in this library. It has been modified from its
6
+ # original forms to accommodate minor architectural differences compared
7
+ # to GPT-NeoX and OPT used by the Meta AI team that trained the model.
8
+ #
9
+ # Licensed under the Apache License, Version 2.0 (the "License");
10
+ # you may not use this file except in compliance with the License.
11
+ # You may obtain a copy of the License at
12
+ #
13
+ # http://www.apache.org/licenses/LICENSE-2.0
14
+ #
15
+ # Unless required by applicable law or agreed to in writing, software
16
+ # distributed under the License is distributed on an "AS IS" BASIS,
17
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
18
+ # See the License for the specific language governing permissions and
19
+ # limitations under the License.
20
+ """ PyTorch DeepSeek model."""
21
+ import math
22
+ import warnings
23
+ from typing import List, Optional, Tuple, Union
24
+
25
+ import torch
26
+ import torch.nn.functional as F
27
+ import torch.utils.checkpoint
28
+ from torch import nn
29
+ from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
30
+
31
+ from transformers.activations import ACT2FN
32
+ from transformers.cache_utils import Cache, DynamicCache
33
+ from transformers.modeling_attn_mask_utils import (
34
+ AttentionMaskConverter,
35
+ _prepare_4d_attention_mask,
36
+ _prepare_4d_causal_attention_mask,
37
+ )
38
+ from transformers.modeling_outputs import (
39
+ BaseModelOutputWithPast,
40
+ CausalLMOutputWithPast,
41
+ SequenceClassifierOutputWithPast,
42
+ )
43
+ from transformers.modeling_utils import PreTrainedModel
44
+ from transformers.pytorch_utils import (
45
+ ALL_LAYERNORM_LAYERS,
46
+ is_torch_greater_or_equal_than_1_13,
47
+ )
48
+ from transformers.utils import (
49
+ add_start_docstrings,
50
+ add_start_docstrings_to_model_forward,
51
+ is_flash_attn_2_available,
52
+ is_flash_attn_greater_or_equal_2_10,
53
+ logging,
54
+ replace_return_docstrings,
55
+ )
56
+ from transformers.utils.import_utils import is_torch_fx_available
57
+ from .configuration_deepseek import DeepseekV3Config
58
+ import torch.distributed as dist
59
+ import numpy as np
60
+
61
+ if is_flash_attn_2_available():
62
+ from flash_attn import flash_attn_func, flash_attn_varlen_func
63
+ from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
64
+
65
+
66
+ # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
67
+ # It means that the function will not be traced through and simply appear as a node in the graph.
68
+ if is_torch_fx_available():
69
+ if not is_torch_greater_or_equal_than_1_13:
70
+ import torch.fx
71
+
72
+ _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
73
+
74
+
75
+ logger = logging.get_logger(__name__)
76
+
77
+ _CONFIG_FOR_DOC = "DeepseekV3Config"
78
+
79
+
80
+ def _get_unpad_data(attention_mask):
81
+ seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
82
+ indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
83
+ max_seqlen_in_batch = seqlens_in_batch.max().item()
84
+ cu_seqlens = F.pad(
85
+ torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.torch.int32), (1, 0)
86
+ )
87
+ return (
88
+ indices,
89
+ cu_seqlens,
90
+ max_seqlen_in_batch,
91
+ )
92
+
93
+
94
+ class DeepseekV3RMSNorm(nn.Module):
95
+ def __init__(self, hidden_size, eps=1e-6):
96
+ """
97
+ DeepseekV3RMSNorm is equivalent to T5LayerNorm
98
+ """
99
+ super().__init__()
100
+ self.weight = nn.Parameter(torch.ones(hidden_size))
101
+ self.variance_epsilon = eps
102
+
103
+ def forward(self, hidden_states):
104
+ input_dtype = hidden_states.dtype
105
+ hidden_states = hidden_states.to(torch.float32)
106
+ variance = hidden_states.pow(2).mean(-1, keepdim=True)
107
+ hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
108
+ return self.weight * hidden_states.to(input_dtype)
109
+
110
+
111
+ ALL_LAYERNORM_LAYERS.append(DeepseekV3RMSNorm)
112
+
113
+
114
+ class DeepseekV3RotaryEmbedding(nn.Module):
115
+ def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
116
+ super().__init__()
117
+
118
+ self.dim = dim
119
+ self.max_position_embeddings = max_position_embeddings
120
+ self.base = base
121
+ inv_freq = 1.0 / (
122
+ self.base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
123
+ )
124
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
125
+
126
+ # Build here to make `torch.jit.trace` work.
127
+ self._set_cos_sin_cache(
128
+ seq_len=max_position_embeddings,
129
+ device=self.inv_freq.device,
130
+ dtype=torch.get_default_dtype(),
131
+ )
132
+ self.max_seq_len_cached = None
133
+
134
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
135
+ self.max_seq_len_cached = seq_len
136
+ t = torch.arange(
137
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
138
+ )
139
+
140
+ freqs = torch.outer(t, self.inv_freq.to(t.device))
141
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
142
+ emb = torch.cat((freqs, freqs), dim=-1)
143
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
144
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
145
+
146
+ def forward(self, x, seq_len=None):
147
+ # x: [bs, num_attention_heads, seq_len, head_size]
148
+ if self.max_seq_len_cached is None or seq_len > self.max_seq_len_cached:
149
+ self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
150
+
151
+ return (
152
+ self.cos_cached[:seq_len].to(dtype=x.dtype),
153
+ self.sin_cached[:seq_len].to(dtype=x.dtype),
154
+ )
155
+
156
+
157
+ # Copied from transformers.models.llama.modeling_llama.LlamaLinearScalingRotaryEmbedding with Llama->DeepseekV3
158
+ class DeepseekV3LinearScalingRotaryEmbedding(DeepseekV3RotaryEmbedding):
159
+ """DeepseekV3RotaryEmbedding extended with linear scaling. Credits to the Reddit user /u/kaiokendev"""
160
+
161
+ def __init__(
162
+ self,
163
+ dim,
164
+ max_position_embeddings=2048,
165
+ base=10000,
166
+ device=None,
167
+ scaling_factor=1.0,
168
+ ):
169
+ self.scaling_factor = scaling_factor
170
+ super().__init__(dim, max_position_embeddings, base, device)
171
+
172
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
173
+ self.max_seq_len_cached = seq_len
174
+ t = torch.arange(
175
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
176
+ )
177
+ t = t / self.scaling_factor
178
+
179
+ freqs = torch.outer(t, self.inv_freq)
180
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
181
+ emb = torch.cat((freqs, freqs), dim=-1)
182
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
183
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
184
+
185
+
186
+ # Copied from transformers.models.llama.modeling_llama.LlamaDynamicNTKScalingRotaryEmbedding with Llama->DeepseekV3
187
+ class DeepseekV3DynamicNTKScalingRotaryEmbedding(DeepseekV3RotaryEmbedding):
188
+ """DeepseekV3RotaryEmbedding extended with Dynamic NTK scaling. Credits to the Reddit users /u/bloc97 and /u/emozilla"""
189
+
190
+ def __init__(
191
+ self,
192
+ dim,
193
+ max_position_embeddings=2048,
194
+ base=10000,
195
+ device=None,
196
+ scaling_factor=1.0,
197
+ ):
198
+ self.scaling_factor = scaling_factor
199
+ super().__init__(dim, max_position_embeddings, base, device)
200
+
201
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
202
+ self.max_seq_len_cached = seq_len
203
+
204
+ if seq_len > self.max_position_embeddings:
205
+ base = self.base * (
206
+ (self.scaling_factor * seq_len / self.max_position_embeddings)
207
+ - (self.scaling_factor - 1)
208
+ ) ** (self.dim / (self.dim - 2))
209
+ inv_freq = 1.0 / (
210
+ base ** (torch.arange(0, self.dim, 2).float().to(device) / self.dim)
211
+ )
212
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
213
+
214
+ t = torch.arange(
215
+ self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype
216
+ )
217
+
218
+ freqs = torch.outer(t, self.inv_freq)
219
+ # Different from paper, but it uses a different permutation in order to obtain the same calculation
220
+ emb = torch.cat((freqs, freqs), dim=-1)
221
+ self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
222
+ self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
223
+
224
+
225
+ # Inverse dim formula to find dim based on number of rotations
226
+ def yarn_find_correction_dim(
227
+ num_rotations, dim, base=10000, max_position_embeddings=2048
228
+ ):
229
+ return (dim * math.log(max_position_embeddings / (num_rotations * 2 * math.pi))) / (
230
+ 2 * math.log(base)
231
+ )
232
+
233
+
234
+ # Find dim range bounds based on rotations
235
+ def yarn_find_correction_range(
236
+ low_rot, high_rot, dim, base=10000, max_position_embeddings=2048
237
+ ):
238
+ low = math.floor(
239
+ yarn_find_correction_dim(low_rot, dim, base, max_position_embeddings)
240
+ )
241
+ high = math.ceil(
242
+ yarn_find_correction_dim(high_rot, dim, base, max_position_embeddings)
243
+ )
244
+ return max(low, 0), min(high, dim - 1) # Clamp values just in case
245
+
246
+
247
+ def yarn_get_mscale(scale=1, mscale=1):
248
+ if scale <= 1:
249
+ return 1.0
250
+ return 0.1 * mscale * math.log(scale) + 1.0
251
+
252
+
253
+ def yarn_linear_ramp_mask(min, max, dim):
254
+ if min == max:
255
+ max += 0.001 # Prevent singularity
256
+
257
+ linear_func = (torch.arange(dim, dtype=torch.float32) - min) / (max - min)
258
+ ramp_func = torch.clamp(linear_func, 0, 1)
259
+ return ramp_func
260
+
261
+
262
+ class DeepseekV3YarnRotaryEmbedding(DeepseekV3RotaryEmbedding):
263
+
264
+ def __init__(
265
+ self,
266
+ dim,
267
+ max_position_embeddings=2048,
268
+ base=10000,
269
+ device=None,
270
+ scaling_factor=1.0,
271
+ original_max_position_embeddings=4096,
272
+ beta_fast=32,
273
+ beta_slow=1,
274
+ mscale=1,
275
+ mscale_all_dim=0,
276
+ ):
277
+ self.scaling_factor = scaling_factor
278
+ self.original_max_position_embeddings = original_max_position_embeddings
279
+ self.beta_fast = beta_fast
280
+ self.beta_slow = beta_slow
281
+ self.mscale = mscale
282
+ self.mscale_all_dim = mscale_all_dim
283
+ super().__init__(dim, max_position_embeddings, base, device)
284
+
285
+ def _set_cos_sin_cache(self, seq_len, device, dtype):
286
+ self.max_seq_len_cached = seq_len
287
+ dim = self.dim
288
+
289
+ freq_extra = 1.0 / (
290
+ self.base
291
+ ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
292
+ )
293
+ freq_inter = 1.0 / (
294
+ self.scaling_factor
295
+ * self.base
296
+ ** (torch.arange(0, dim, 2, dtype=torch.float32, device=device) / dim)
297
+ )
298
+
299
+ low, high = yarn_find_correction_range(
300
+ self.beta_fast,
301
+ self.beta_slow,
302
+ dim,
303
+ self.base,
304
+ self.original_max_position_embeddings,
305
+ )
306
+ inv_freq_mask = 1.0 - yarn_linear_ramp_mask(low, high, dim // 2).to(
307
+ device=device, dtype=torch.float32
308
+ )
309
+ inv_freq = freq_inter * (1 - inv_freq_mask) + freq_extra * inv_freq_mask
310
+ self.register_buffer("inv_freq", inv_freq, persistent=False)
311
+
312
+ t = torch.arange(seq_len, device=device, dtype=torch.float32)
313
+
314
+ freqs = torch.outer(t, inv_freq)
315
+
316
+ _mscale = float(
317
+ yarn_get_mscale(self.scaling_factor, self.mscale)
318
+ / yarn_get_mscale(self.scaling_factor, self.mscale_all_dim)
319
+ )
320
+
321
+ emb = torch.cat((freqs, freqs), dim=-1)
322
+ self.register_buffer(
323
+ "cos_cached", (emb.cos() * _mscale).to(dtype), persistent=False
324
+ )
325
+ self.register_buffer(
326
+ "sin_cached", (emb.sin() * _mscale).to(dtype), persistent=False
327
+ )
328
+
329
+
330
+ # Copied from transformers.models.llama.modeling_llama.rotate_half
331
+ def rotate_half(x):
332
+ """Rotates half the hidden dims of the input."""
333
+ x1 = x[..., : x.shape[-1] // 2]
334
+ x2 = x[..., x.shape[-1] // 2 :]
335
+ return torch.cat((-x2, x1), dim=-1)
336
+
337
+
338
+ # Copied from transformers.models.llama.modeling_llama.apply_rotary_pos_emb
339
+ def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
340
+ """Applies Rotary Position Embedding to the query and key tensors.
341
+
342
+ Args:
343
+ q (`torch.Tensor`): The query tensor.
344
+ k (`torch.Tensor`): The key tensor.
345
+ cos (`torch.Tensor`): The cosine part of the rotary embedding.
346
+ sin (`torch.Tensor`): The sine part of the rotary embedding.
347
+ position_ids (`torch.Tensor`):
348
+ The position indices of the tokens corresponding to the query and key tensors. For example, this can be
349
+ used to pass offsetted position ids when working with a KV-cache.
350
+ unsqueeze_dim (`int`, *optional*, defaults to 1):
351
+ The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
352
+ sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
353
+ that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
354
+ k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
355
+ cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
356
+ the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
357
+ Returns:
358
+ `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
359
+ """
360
+ cos = cos[position_ids].unsqueeze(unsqueeze_dim)
361
+ sin = sin[position_ids].unsqueeze(unsqueeze_dim)
362
+
363
+ b, h, s, d = q.shape
364
+ q = q.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
365
+
366
+ b, h, s, d = k.shape
367
+ k = k.view(b, h, s, d // 2, 2).transpose(4, 3).reshape(b, h, s, d)
368
+
369
+ q_embed = (q * cos) + (rotate_half(q) * sin)
370
+ k_embed = (k * cos) + (rotate_half(k) * sin)
371
+ return q_embed, k_embed
372
+
373
+
374
+ class DeepseekV3MLP(nn.Module):
375
+ def __init__(self, config, hidden_size=None, intermediate_size=None):
376
+ super().__init__()
377
+ self.config = config
378
+ self.hidden_size = config.hidden_size if hidden_size is None else hidden_size
379
+ self.intermediate_size = (
380
+ config.intermediate_size if intermediate_size is None else intermediate_size
381
+ )
382
+
383
+ self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
384
+ self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False)
385
+ self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False)
386
+ self.act_fn = ACT2FN[config.hidden_act]
387
+
388
+ def forward(self, x):
389
+ down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
390
+ return down_proj
391
+
392
+
393
+ class MoEGate(nn.Module):
394
+ def __init__(self, config):
395
+ super().__init__()
396
+ self.config = config
397
+ self.top_k = config.num_experts_per_tok
398
+ self.n_routed_experts = config.n_routed_experts
399
+ self.routed_scaling_factor = config.routed_scaling_factor
400
+ self.scoring_func = config.scoring_func
401
+ self.topk_method = config.topk_method
402
+ self.n_group = config.n_group
403
+ self.topk_group = config.topk_group
404
+
405
+ # topk selection algorithm
406
+ self.norm_topk_prob = config.norm_topk_prob
407
+ self.gating_dim = config.hidden_size
408
+ self.weight = nn.Parameter(
409
+ torch.empty((self.n_routed_experts, self.gating_dim))
410
+ )
411
+ if self.topk_method == "noaux_tc":
412
+ self.e_score_correction_bias = nn.Parameter(
413
+ torch.empty((self.n_routed_experts))
414
+ )
415
+ self.reset_parameters()
416
+
417
+ def reset_parameters(self) -> None:
418
+ import torch.nn.init as init
419
+
420
+ init.kaiming_uniform_(self.weight, a=math.sqrt(5))
421
+
422
+ def forward(self, hidden_states):
423
+ bsz, seq_len, h = hidden_states.shape
424
+ ### compute gating score
425
+ hidden_states = hidden_states.view(-1, h)
426
+ logits = F.linear(
427
+ hidden_states.type(torch.float32), self.weight.type(torch.float32), None
428
+ )
429
+ if self.scoring_func == "sigmoid":
430
+ scores = logits.sigmoid()
431
+ else:
432
+ raise NotImplementedError(
433
+ f"insupportable scoring function for MoE gating: {self.scoring_func}"
434
+ )
435
+
436
+ ### select top-k experts
437
+ if self.topk_method == "noaux_tc":
438
+ assert not self.training
439
+ scores_for_choice = scores.view(bsz * seq_len, -1) + self.e_score_correction_bias.unsqueeze(0)
440
+ group_scores = (
441
+ scores_for_choice.view(bsz * seq_len, self.n_group, -1).topk(2, dim=-1)[0].sum(dim = -1)
442
+ ) # [n, n_group]
443
+ group_idx = torch.topk(
444
+ group_scores, k=self.topk_group, dim=-1, sorted=False
445
+ )[
446
+ 1
447
+ ] # [n, top_k_group]
448
+ group_mask = torch.zeros_like(group_scores) # [n, n_group]
449
+ group_mask.scatter_(1, group_idx, 1) # [n, n_group]
450
+ score_mask = (
451
+ group_mask.unsqueeze(-1)
452
+ .expand(
453
+ bsz * seq_len, self.n_group, self.n_routed_experts // self.n_group
454
+ )
455
+ .reshape(bsz * seq_len, -1)
456
+ ) # [n, e]
457
+ tmp_scores = scores_for_choice.masked_fill(~score_mask.bool(), float("-inf")) # [n, e]
458
+ _, topk_idx = torch.topk(
459
+ tmp_scores, k=self.top_k, dim=-1, sorted=False
460
+ )
461
+ topk_weight = scores.gather(1, topk_idx)
462
+ else:
463
+ raise NotImplementedError(
464
+ f"insupportable TopK function for MoE gating: {self.topk_method}"
465
+ )
466
+
467
+ ### norm gate to sum 1
468
+ if self.top_k > 1 and self.norm_topk_prob:
469
+ denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
470
+ topk_weight = topk_weight / denominator
471
+ topk_weight = topk_weight * self.routed_scaling_factor # must multiply the scaling factor
472
+
473
+ return topk_idx, topk_weight
474
+
475
+ class DeepseekV3MoE(nn.Module):
476
+ """
477
+ A mixed expert module containing shared experts.
478
+ """
479
+
480
+ def __init__(self, config):
481
+ super().__init__()
482
+ self.config = config
483
+ self.num_experts_per_tok = config.num_experts_per_tok
484
+
485
+ if hasattr(config, "ep_size") and config.ep_size > 1:
486
+ assert config.ep_size == dist.get_world_size()
487
+ self.ep_size = config.ep_size
488
+ self.experts_per_rank = config.n_routed_experts // config.ep_size
489
+ self.ep_rank = dist.get_rank()
490
+ self.experts = nn.ModuleList(
491
+ [
492
+ (
493
+ DeepseekV3MLP(
494
+ config, intermediate_size=config.moe_intermediate_size
495
+ )
496
+ if i >= self.ep_rank * self.experts_per_rank
497
+ and i < (self.ep_rank + 1) * self.experts_per_rank
498
+ else None
499
+ )
500
+ for i in range(config.n_routed_experts)
501
+ ]
502
+ )
503
+ else:
504
+ self.ep_size = 1
505
+ self.experts_per_rank = config.n_routed_experts
506
+ self.ep_rank = 0
507
+ self.experts = nn.ModuleList(
508
+ [
509
+ DeepseekV3MLP(
510
+ config, intermediate_size=config.moe_intermediate_size
511
+ )
512
+ for i in range(config.n_routed_experts)
513
+ ]
514
+ )
515
+ self.gate = MoEGate(config)
516
+ if config.n_shared_experts is not None:
517
+ intermediate_size = config.moe_intermediate_size * config.n_shared_experts
518
+ self.shared_experts = DeepseekV3MLP(
519
+ config=config, intermediate_size=intermediate_size
520
+ )
521
+
522
+ def forward(self, hidden_states):
523
+ identity = hidden_states
524
+ orig_shape = hidden_states.shape
525
+ topk_idx, topk_weight = self.gate(hidden_states)
526
+ hidden_states = hidden_states.view(-1, hidden_states.shape[-1])
527
+ flat_topk_idx = topk_idx.view(-1)
528
+ if not self.training:
529
+ y = self.moe_infer(hidden_states, topk_idx, topk_weight).view(*orig_shape)
530
+ if self.config.n_shared_experts is not None:
531
+ y = y + self.shared_experts(identity)
532
+ return y
533
+
534
+ @torch.no_grad()
535
+ def moe_infer(self, x, topk_ids, topk_weight):
536
+ cnts = topk_ids.new_zeros((topk_ids.shape[0], len(self.experts)))
537
+ cnts.scatter_(1, topk_ids, 1)
538
+ tokens_per_expert = cnts.sum(dim=0)
539
+ idxs = topk_ids.view(-1).argsort()
540
+ sorted_tokens = x[idxs // topk_ids.shape[1]]
541
+ sorted_tokens_shape = sorted_tokens.shape
542
+ if self.ep_size > 1:
543
+ tokens_per_ep_rank = tokens_per_expert.view(self.ep_size, -1).sum(dim=1)
544
+ tokens_per_expert_group = tokens_per_expert.new_empty(
545
+ tokens_per_expert.shape[0]
546
+ )
547
+ dist.all_to_all_single(tokens_per_expert_group, tokens_per_expert)
548
+ output_splits = (
549
+ tokens_per_expert_group.view(self.ep_size, -1)
550
+ .sum(1)
551
+ .cpu()
552
+ .numpy()
553
+ .tolist()
554
+ )
555
+ gathered_tokens = sorted_tokens.new_empty(
556
+ tokens_per_expert_group.sum(dim=0).cpu().item(), sorted_tokens.shape[1]
557
+ )
558
+ input_split_sizes = tokens_per_ep_rank.cpu().numpy().tolist()
559
+ dist.all_to_all(
560
+ list(gathered_tokens.split(output_splits)),
561
+ list(sorted_tokens.split(input_split_sizes)),
562
+ )
563
+ tokens_per_expert_post_gather = tokens_per_expert_group.view(
564
+ self.ep_size, self.experts_per_rank
565
+ ).sum(dim=0)
566
+ gatherd_idxs = np.zeros(shape=(gathered_tokens.shape[0],), dtype=np.int32)
567
+ s = 0
568
+ for i, k in enumerate(tokens_per_expert_group.cpu().numpy()):
569
+ gatherd_idxs[s : s + k] = i % self.experts_per_rank
570
+ s += k
571
+ gatherd_idxs = gatherd_idxs.argsort()
572
+ sorted_tokens = gathered_tokens[gatherd_idxs]
573
+ tokens_per_expert = tokens_per_expert_post_gather
574
+ tokens_per_expert = tokens_per_expert.cpu().numpy()
575
+
576
+ outputs = []
577
+ start_idx = 0
578
+ for i, num_tokens in enumerate(tokens_per_expert):
579
+ end_idx = start_idx + num_tokens
580
+ if num_tokens == 0:
581
+ continue
582
+ expert = self.experts[i + self.ep_rank * self.experts_per_rank]
583
+ tokens_for_this_expert = sorted_tokens[start_idx:end_idx]
584
+ expert_out = expert(tokens_for_this_expert)
585
+ outputs.append(expert_out)
586
+ start_idx = end_idx
587
+
588
+ outs = torch.cat(outputs, dim=0) if len(outputs) else sorted_tokens.new_empty(0)
589
+ if self.ep_size > 1:
590
+ new_x = torch.empty_like(outs)
591
+ new_x[gatherd_idxs] = outs
592
+ gathered_tokens = new_x.new_empty(*sorted_tokens_shape)
593
+ dist.all_to_all(
594
+ list(gathered_tokens.split(input_split_sizes)),
595
+ list(new_x.split(output_splits)),
596
+ )
597
+ outs = gathered_tokens
598
+
599
+ new_x = torch.empty_like(outs)
600
+ new_x[idxs] = outs
601
+ final_out = (
602
+ new_x.view(*topk_ids.shape, -1)
603
+ .type(topk_weight.dtype)
604
+ .mul_(topk_weight.unsqueeze(dim=-1))
605
+ .sum(dim=1)
606
+ .type(new_x.dtype)
607
+ )
608
+ return final_out
609
+
610
+
611
+ # Copied from transformers.models.llama.modeling_llama.repeat_kv
612
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
613
+ """
614
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
615
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
616
+ """
617
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
618
+ if n_rep == 1:
619
+ return hidden_states
620
+ hidden_states = hidden_states[:, :, None, :, :].expand(
621
+ batch, num_key_value_heads, n_rep, slen, head_dim
622
+ )
623
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
624
+
625
+
626
+ # Copied from transformers.models.llama.modeling_llama.LlamaAttention with Llama->DeepseekV3
627
+ class DeepseekV3Attention(nn.Module):
628
+ """Multi-headed attention from 'Attention Is All You Need' paper"""
629
+
630
+ def __init__(self, config: DeepseekV3Config, layer_idx: Optional[int] = None):
631
+ super().__init__()
632
+ self.config = config
633
+ self.layer_idx = layer_idx
634
+ if layer_idx is None:
635
+ logger.warning_once(
636
+ f"Instantiating {self.__class__.__name__} without passing `layer_idx` is not recommended and will "
637
+ "to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` "
638
+ "when creating this class."
639
+ )
640
+
641
+ self.attention_dropout = config.attention_dropout
642
+ self.hidden_size = config.hidden_size
643
+ self.num_heads = config.num_attention_heads
644
+
645
+ self.max_position_embeddings = config.max_position_embeddings
646
+ self.rope_theta = config.rope_theta
647
+ self.q_lora_rank = config.q_lora_rank
648
+ self.qk_rope_head_dim = config.qk_rope_head_dim
649
+ self.kv_lora_rank = config.kv_lora_rank
650
+ self.v_head_dim = config.v_head_dim
651
+ self.qk_nope_head_dim = config.qk_nope_head_dim
652
+ self.q_head_dim = config.qk_nope_head_dim + config.qk_rope_head_dim
653
+
654
+ self.is_causal = True
655
+
656
+ if self.q_lora_rank is None:
657
+ self.q_proj = nn.Linear(
658
+ self.hidden_size, self.num_heads * self.q_head_dim, bias=False
659
+ )
660
+ else:
661
+ self.q_a_proj = nn.Linear(
662
+ self.hidden_size, config.q_lora_rank, bias=config.attention_bias
663
+ )
664
+ self.q_a_layernorm = DeepseekV3RMSNorm(config.q_lora_rank)
665
+ self.q_b_proj = nn.Linear(
666
+ config.q_lora_rank, self.num_heads * self.q_head_dim, bias=False
667
+ )
668
+
669
+ self.kv_a_proj_with_mqa = nn.Linear(
670
+ self.hidden_size,
671
+ config.kv_lora_rank + config.qk_rope_head_dim,
672
+ bias=config.attention_bias,
673
+ )
674
+ self.kv_a_layernorm = DeepseekV3RMSNorm(config.kv_lora_rank)
675
+ self.kv_b_proj = nn.Linear(
676
+ config.kv_lora_rank,
677
+ self.num_heads
678
+ * (self.q_head_dim - self.qk_rope_head_dim + self.v_head_dim),
679
+ bias=False,
680
+ )
681
+
682
+ self.o_proj = nn.Linear(
683
+ self.num_heads * self.v_head_dim,
684
+ self.hidden_size,
685
+ bias=config.attention_bias,
686
+ )
687
+ self._init_rope()
688
+
689
+ self.softmax_scale = self.q_head_dim ** (-0.5)
690
+ if self.config.rope_scaling is not None:
691
+ mscale_all_dim = self.config.rope_scaling.get("mscale_all_dim", 0)
692
+ scaling_factor = self.config.rope_scaling["factor"]
693
+ if mscale_all_dim:
694
+ mscale = yarn_get_mscale(scaling_factor, mscale_all_dim)
695
+ self.softmax_scale = self.softmax_scale * mscale * mscale
696
+
697
+ def _init_rope(self):
698
+ if self.config.rope_scaling is None:
699
+ self.rotary_emb = DeepseekV3RotaryEmbedding(
700
+ self.qk_rope_head_dim,
701
+ max_position_embeddings=self.max_position_embeddings,
702
+ base=self.rope_theta,
703
+ )
704
+ else:
705
+ scaling_type = self.config.rope_scaling["type"]
706
+ scaling_factor = self.config.rope_scaling["factor"]
707
+ if scaling_type == "linear":
708
+ self.rotary_emb = DeepseekV3LinearScalingRotaryEmbedding(
709
+ self.qk_rope_head_dim,
710
+ max_position_embeddings=self.max_position_embeddings,
711
+ scaling_factor=scaling_factor,
712
+ base=self.rope_theta,
713
+ )
714
+ elif scaling_type == "dynamic":
715
+ self.rotary_emb = DeepseekV3DynamicNTKScalingRotaryEmbedding(
716
+ self.qk_rope_head_dim,
717
+ max_position_embeddings=self.max_position_embeddings,
718
+ scaling_factor=scaling_factor,
719
+ base=self.rope_theta,
720
+ )
721
+ elif scaling_type == "yarn":
722
+ kwargs = {
723
+ key: self.config.rope_scaling[key]
724
+ for key in [
725
+ "original_max_position_embeddings",
726
+ "beta_fast",
727
+ "beta_slow",
728
+ "mscale",
729
+ "mscale_all_dim",
730
+ ]
731
+ if key in self.config.rope_scaling
732
+ }
733
+ self.rotary_emb = DeepseekV3YarnRotaryEmbedding(
734
+ self.qk_rope_head_dim,
735
+ max_position_embeddings=self.max_position_embeddings,
736
+ scaling_factor=scaling_factor,
737
+ base=self.rope_theta,
738
+ **kwargs,
739
+ )
740
+ else:
741
+ raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
742
+
743
+ def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
744
+ return (
745
+ tensor.view(bsz, seq_len, self.num_heads, self.v_head_dim)
746
+ .transpose(1, 2)
747
+ .contiguous()
748
+ )
749
+
750
+ def forward(
751
+ self,
752
+ hidden_states: torch.Tensor,
753
+ attention_mask: Optional[torch.Tensor] = None,
754
+ position_ids: Optional[torch.LongTensor] = None,
755
+ past_key_value: Optional[Cache] = None,
756
+ output_attentions: bool = False,
757
+ use_cache: bool = False,
758
+ **kwargs,
759
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
760
+ if "padding_mask" in kwargs:
761
+ warnings.warn(
762
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
763
+ )
764
+ bsz, q_len, _ = hidden_states.size()
765
+
766
+ if self.q_lora_rank is None:
767
+ q = self.q_proj(hidden_states)
768
+ else:
769
+ q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
770
+ q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
771
+ q_nope, q_pe = torch.split(
772
+ q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
773
+ )
774
+
775
+ compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
776
+ compressed_kv, k_pe = torch.split(
777
+ compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
778
+ )
779
+ k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
780
+ kv = (
781
+ self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
782
+ .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
783
+ .transpose(1, 2)
784
+ )
785
+
786
+ k_nope, value_states = torch.split(
787
+ kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
788
+ )
789
+ kv_seq_len = value_states.shape[-2]
790
+ if past_key_value is not None:
791
+ if self.layer_idx is None:
792
+ raise ValueError(
793
+ f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
794
+ "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
795
+ "with a layer index."
796
+ )
797
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
798
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
799
+
800
+ q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
801
+
802
+ query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
803
+ query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
804
+ query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
805
+
806
+ key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
807
+ key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
808
+ key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
809
+ if past_key_value is not None:
810
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
811
+ key_states, value_states = past_key_value.update(
812
+ key_states, value_states, self.layer_idx, cache_kwargs
813
+ )
814
+
815
+ attn_weights = (
816
+ torch.matmul(query_states, key_states.transpose(2, 3)) * self.softmax_scale
817
+ )
818
+
819
+ if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
820
+ raise ValueError(
821
+ f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
822
+ f" {attn_weights.size()}"
823
+ )
824
+ assert attention_mask is not None
825
+ if attention_mask is not None:
826
+ if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
827
+ raise ValueError(
828
+ f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
829
+ )
830
+ attn_weights = attn_weights + attention_mask
831
+
832
+ # upcast attention to fp32
833
+ attn_weights = nn.functional.softmax(
834
+ attn_weights, dim=-1, dtype=torch.float32
835
+ ).to(query_states.dtype)
836
+ attn_weights = nn.functional.dropout(
837
+ attn_weights, p=self.attention_dropout, training=self.training
838
+ )
839
+ attn_output = torch.matmul(attn_weights, value_states)
840
+
841
+ if attn_output.size() != (bsz, self.num_heads, q_len, self.v_head_dim):
842
+ raise ValueError(
843
+ f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.v_head_dim)}, but is"
844
+ f" {attn_output.size()}"
845
+ )
846
+
847
+ attn_output = attn_output.transpose(1, 2).contiguous()
848
+
849
+ attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.v_head_dim)
850
+
851
+ attn_output = self.o_proj(attn_output)
852
+
853
+ if not output_attentions:
854
+ attn_weights = None
855
+
856
+ return attn_output, attn_weights, past_key_value
857
+
858
+
859
+ # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2 with Llama->DeepseekV3
860
+ class DeepseekV3FlashAttention2(DeepseekV3Attention):
861
+ """
862
+ DeepseekV3 flash attention module. This module inherits from `DeepseekV3Attention` as the weights of the module stays
863
+ untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
864
+ flash attention and deal with padding tokens in case the input contains any of them.
865
+ """
866
+
867
+ def __init__(self, *args, **kwargs):
868
+ super().__init__(*args, **kwargs)
869
+
870
+ # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
871
+ # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
872
+ # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
873
+ self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
874
+
875
+ def forward(
876
+ self,
877
+ hidden_states: torch.Tensor,
878
+ attention_mask: Optional[torch.LongTensor] = None,
879
+ position_ids: Optional[torch.LongTensor] = None,
880
+ past_key_value: Optional[Cache] = None,
881
+ output_attentions: bool = False,
882
+ use_cache: bool = False,
883
+ **kwargs,
884
+ ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
885
+ # DeepseekV3FlashAttention2 attention does not support output_attentions
886
+ if "padding_mask" in kwargs:
887
+ warnings.warn(
888
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
889
+ )
890
+
891
+ # overwrite attention_mask with padding_mask
892
+ attention_mask = kwargs.pop("padding_mask")
893
+
894
+ output_attentions = False
895
+
896
+ bsz, q_len, _ = hidden_states.size()
897
+
898
+ if self.q_lora_rank is None:
899
+ q = self.q_proj(hidden_states)
900
+ else:
901
+ q = self.q_b_proj(self.q_a_layernorm(self.q_a_proj(hidden_states)))
902
+ q = q.view(bsz, q_len, self.num_heads, self.q_head_dim).transpose(1, 2)
903
+ q_nope, q_pe = torch.split(
904
+ q, [self.qk_nope_head_dim, self.qk_rope_head_dim], dim=-1
905
+ )
906
+
907
+ # Flash attention requires the input to have the shape
908
+ # batch_size x seq_length x head_dim x hidden_dim
909
+ # therefore we just need to keep the original shape
910
+ compressed_kv = self.kv_a_proj_with_mqa(hidden_states)
911
+ compressed_kv, k_pe = torch.split(
912
+ compressed_kv, [self.kv_lora_rank, self.qk_rope_head_dim], dim=-1
913
+ )
914
+ k_pe = k_pe.view(bsz, q_len, 1, self.qk_rope_head_dim).transpose(1, 2)
915
+ kv = (
916
+ self.kv_b_proj(self.kv_a_layernorm(compressed_kv))
917
+ .view(bsz, q_len, self.num_heads, self.qk_nope_head_dim + self.v_head_dim)
918
+ .transpose(1, 2)
919
+ )
920
+
921
+ k_nope, value_states = torch.split(
922
+ kv, [self.qk_nope_head_dim, self.v_head_dim], dim=-1
923
+ )
924
+ kv_seq_len = value_states.shape[-2]
925
+
926
+ kv_seq_len = value_states.shape[-2]
927
+ if past_key_value is not None:
928
+ kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
929
+
930
+ cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
931
+ q_pe, k_pe = apply_rotary_pos_emb(q_pe, k_pe, cos, sin, position_ids)
932
+
933
+ query_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
934
+ query_states[:, :, :, : self.qk_nope_head_dim] = q_nope
935
+ query_states[:, :, :, self.qk_nope_head_dim :] = q_pe
936
+
937
+ key_states = k_pe.new_empty(bsz, self.num_heads, q_len, self.q_head_dim)
938
+ key_states[:, :, :, : self.qk_nope_head_dim] = k_nope
939
+ key_states[:, :, :, self.qk_nope_head_dim :] = k_pe
940
+
941
+ if self.q_head_dim != self.v_head_dim:
942
+ value_states = F.pad(value_states, [0, self.q_head_dim - self.v_head_dim])
943
+
944
+ if past_key_value is not None:
945
+ cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
946
+ key_states, value_states = past_key_value.update(
947
+ key_states, value_states, self.layer_idx, cache_kwargs
948
+ )
949
+
950
+ # TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
951
+ # to be able to avoid many of these transpose/reshape/view.
952
+ query_states = query_states.transpose(1, 2)
953
+ key_states = key_states.transpose(1, 2)
954
+ value_states = value_states.transpose(1, 2)
955
+
956
+ dropout_rate = self.attention_dropout if self.training else 0.0
957
+
958
+ # In PEFT, usually we cast the layer norms in float32 for training stability reasons
959
+ # therefore the input hidden states gets silently casted in float32. Hence, we need
960
+ # cast them back in the correct dtype just to be sure everything works as expected.
961
+ # This might slowdown training & inference so it is recommended to not cast the LayerNorms
962
+ # in fp32. (DeepseekV3RMSNorm handles it correctly)
963
+
964
+ input_dtype = query_states.dtype
965
+ if input_dtype == torch.float32:
966
+ # Handle the case where the model is quantized
967
+ if hasattr(self.config, "_pre_quantization_dtype"):
968
+ target_dtype = self.config._pre_quantization_dtype
969
+ elif torch.is_autocast_enabled():
970
+ target_dtype = torch.get_autocast_gpu_dtype()
971
+ else:
972
+ target_dtype = (
973
+ self.q_proj.weight.dtype
974
+ if self.q_lora_rank is None
975
+ else self.q_a_proj.weight.dtype
976
+ )
977
+
978
+ logger.warning_once(
979
+ f"The input hidden states seems to be silently casted in float32, this might be related to"
980
+ f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
981
+ f" {target_dtype}."
982
+ )
983
+
984
+ query_states = query_states.to(target_dtype)
985
+ key_states = key_states.to(target_dtype)
986
+ value_states = value_states.to(target_dtype)
987
+
988
+ attn_output = self._flash_attention_forward(
989
+ query_states,
990
+ key_states,
991
+ value_states,
992
+ attention_mask,
993
+ q_len,
994
+ dropout=dropout_rate,
995
+ softmax_scale=self.softmax_scale,
996
+ )
997
+ if self.q_head_dim != self.v_head_dim:
998
+ attn_output = attn_output[:, :, :, : self.v_head_dim]
999
+
1000
+ attn_output = attn_output.reshape(
1001
+ bsz, q_len, self.num_heads * self.v_head_dim
1002
+ ).contiguous()
1003
+ attn_output = self.o_proj(attn_output)
1004
+
1005
+ if not output_attentions:
1006
+ attn_weights = None
1007
+
1008
+ return attn_output, attn_weights, past_key_value
1009
+
1010
+ def _flash_attention_forward(
1011
+ self,
1012
+ query_states,
1013
+ key_states,
1014
+ value_states,
1015
+ attention_mask,
1016
+ query_length,
1017
+ dropout=0.0,
1018
+ softmax_scale=None,
1019
+ ):
1020
+ """
1021
+ Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
1022
+ first unpad the input, then computes the attention scores and pad the final attention scores.
1023
+
1024
+ Args:
1025
+ query_states (`torch.Tensor`):
1026
+ Input query states to be passed to Flash Attention API
1027
+ key_states (`torch.Tensor`):
1028
+ Input key states to be passed to Flash Attention API
1029
+ value_states (`torch.Tensor`):
1030
+ Input value states to be passed to Flash Attention API
1031
+ attention_mask (`torch.Tensor`):
1032
+ The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
1033
+ position of padding tokens and 1 for the position of non-padding tokens.
1034
+ dropout (`int`, *optional*):
1035
+ Attention dropout
1036
+ softmax_scale (`float`, *optional*):
1037
+ The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
1038
+ """
1039
+ if not self._flash_attn_uses_top_left_mask:
1040
+ causal = self.is_causal
1041
+ else:
1042
+ # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in DeepseekV3FlashAttention2 __init__.
1043
+ causal = self.is_causal and query_length != 1
1044
+
1045
+ # Contains at least one padding token in the sequence
1046
+ if attention_mask is not None:
1047
+ batch_size = query_states.shape[0]
1048
+ (
1049
+ query_states,
1050
+ key_states,
1051
+ value_states,
1052
+ indices_q,
1053
+ cu_seq_lens,
1054
+ max_seq_lens,
1055
+ ) = self._upad_input(
1056
+ query_states, key_states, value_states, attention_mask, query_length
1057
+ )
1058
+
1059
+ cu_seqlens_q, cu_seqlens_k = cu_seq_lens
1060
+ max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
1061
+
1062
+ attn_output_unpad = flash_attn_varlen_func(
1063
+ query_states,
1064
+ key_states,
1065
+ value_states,
1066
+ cu_seqlens_q=cu_seqlens_q,
1067
+ cu_seqlens_k=cu_seqlens_k,
1068
+ max_seqlen_q=max_seqlen_in_batch_q,
1069
+ max_seqlen_k=max_seqlen_in_batch_k,
1070
+ dropout_p=dropout,
1071
+ softmax_scale=softmax_scale,
1072
+ causal=causal,
1073
+ )
1074
+
1075
+ attn_output = pad_input(
1076
+ attn_output_unpad, indices_q, batch_size, query_length
1077
+ )
1078
+ else:
1079
+ attn_output = flash_attn_func(
1080
+ query_states,
1081
+ key_states,
1082
+ value_states,
1083
+ dropout,
1084
+ softmax_scale=softmax_scale,
1085
+ causal=causal,
1086
+ )
1087
+
1088
+ return attn_output
1089
+
1090
+ def _upad_input(
1091
+ self, query_layer, key_layer, value_layer, attention_mask, query_length
1092
+ ):
1093
+ indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
1094
+ batch_size, kv_seq_len, num_key_value_heads, head_dim = key_layer.shape
1095
+
1096
+ key_layer = index_first_axis(
1097
+ key_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
1098
+ indices_k,
1099
+ )
1100
+ value_layer = index_first_axis(
1101
+ value_layer.reshape(batch_size * kv_seq_len, num_key_value_heads, head_dim),
1102
+ indices_k,
1103
+ )
1104
+ if query_length == kv_seq_len:
1105
+ query_layer = index_first_axis(
1106
+ query_layer.reshape(batch_size * kv_seq_len, self.num_heads, head_dim),
1107
+ indices_k,
1108
+ )
1109
+ cu_seqlens_q = cu_seqlens_k
1110
+ max_seqlen_in_batch_q = max_seqlen_in_batch_k
1111
+ indices_q = indices_k
1112
+ elif query_length == 1:
1113
+ max_seqlen_in_batch_q = 1
1114
+ cu_seqlens_q = torch.arange(
1115
+ batch_size + 1, dtype=torch.int32, device=query_layer.device
1116
+ ) # There is a memcpy here, that is very bad.
1117
+ indices_q = cu_seqlens_q[:-1]
1118
+ query_layer = query_layer.squeeze(1)
1119
+ else:
1120
+ # The -q_len: slice assumes left padding.
1121
+ attention_mask = attention_mask[:, -query_length:]
1122
+ query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(
1123
+ query_layer, attention_mask
1124
+ )
1125
+
1126
+ return (
1127
+ query_layer,
1128
+ key_layer,
1129
+ value_layer,
1130
+ indices_q,
1131
+ (cu_seqlens_q, cu_seqlens_k),
1132
+ (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
1133
+ )
1134
+
1135
+
1136
+ ATTENTION_CLASSES = {
1137
+ "eager": DeepseekV3Attention,
1138
+ "flash_attention_2": DeepseekV3FlashAttention2,
1139
+ }
1140
+
1141
+
1142
+ class DeepseekV3DecoderLayer(nn.Module):
1143
+ def __init__(self, config: DeepseekV3Config, layer_idx: int):
1144
+ super().__init__()
1145
+ self.hidden_size = config.hidden_size
1146
+
1147
+ self.self_attn = ATTENTION_CLASSES[config._attn_implementation](
1148
+ config=config, layer_idx=layer_idx
1149
+ )
1150
+
1151
+ self.mlp = (
1152
+ DeepseekV3MoE(config)
1153
+ if (
1154
+ config.n_routed_experts is not None
1155
+ and layer_idx >= config.first_k_dense_replace
1156
+ and layer_idx % config.moe_layer_freq == 0
1157
+ )
1158
+ else DeepseekV3MLP(config)
1159
+ )
1160
+ self.input_layernorm = DeepseekV3RMSNorm(
1161
+ config.hidden_size, eps=config.rms_norm_eps
1162
+ )
1163
+ self.post_attention_layernorm = DeepseekV3RMSNorm(
1164
+ config.hidden_size, eps=config.rms_norm_eps
1165
+ )
1166
+
1167
+ def forward(
1168
+ self,
1169
+ hidden_states: torch.Tensor,
1170
+ attention_mask: Optional[torch.Tensor] = None,
1171
+ position_ids: Optional[torch.LongTensor] = None,
1172
+ past_key_value: Optional[Tuple[torch.Tensor]] = None,
1173
+ output_attentions: Optional[bool] = False,
1174
+ use_cache: Optional[bool] = False,
1175
+ **kwargs,
1176
+ ) -> Tuple[
1177
+ torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
1178
+ ]:
1179
+ """
1180
+ Args:
1181
+ hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
1182
+ attention_mask (`torch.FloatTensor`, *optional*):
1183
+ attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
1184
+ query_sequence_length, key_sequence_length)` if default attention is used.
1185
+ output_attentions (`bool`, *optional*):
1186
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under
1187
+ returned tensors for more detail.
1188
+ use_cache (`bool`, *optional*):
1189
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
1190
+ (see `past_key_values`).
1191
+ past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
1192
+ """
1193
+ if "padding_mask" in kwargs:
1194
+ warnings.warn(
1195
+ "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
1196
+ )
1197
+ residual = hidden_states
1198
+
1199
+ hidden_states = self.input_layernorm(hidden_states)
1200
+
1201
+ # Self Attention
1202
+ hidden_states, self_attn_weights, present_key_value = self.self_attn(
1203
+ hidden_states=hidden_states,
1204
+ attention_mask=attention_mask,
1205
+ position_ids=position_ids,
1206
+ past_key_value=past_key_value,
1207
+ output_attentions=output_attentions,
1208
+ use_cache=use_cache,
1209
+ **kwargs,
1210
+ )
1211
+ hidden_states = residual + hidden_states
1212
+
1213
+ # Fully Connected
1214
+ residual = hidden_states
1215
+ hidden_states = self.post_attention_layernorm(hidden_states)
1216
+ hidden_states = self.mlp(hidden_states)
1217
+ hidden_states = residual + hidden_states
1218
+
1219
+ outputs = (hidden_states,)
1220
+
1221
+ if output_attentions:
1222
+ outputs += (self_attn_weights,)
1223
+
1224
+ if use_cache:
1225
+ outputs += (present_key_value,)
1226
+
1227
+ return outputs
1228
+
1229
+
1230
+ DeepseekV3_START_DOCSTRING = r"""
1231
+ This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
1232
+ library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
1233
+ etc.)
1234
+
1235
+ This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
1236
+ Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
1237
+ and behavior.
1238
+
1239
+ Parameters:
1240
+ config ([`DeepseekV3Config`]):
1241
+ Model configuration class with all the parameters of the model. Initializing with a config file does not
1242
+ load the weights associated with the model, only the configuration. Check out the
1243
+ [`~PreTrainedModel.from_pretrained`] method to load the model weights.
1244
+ """
1245
+
1246
+
1247
+ @add_start_docstrings(
1248
+ "The bare DeepseekV3 Model outputting raw hidden-states without any specific head on top.",
1249
+ DeepseekV3_START_DOCSTRING,
1250
+ )
1251
+ class DeepseekV3PreTrainedModel(PreTrainedModel):
1252
+ config_class = DeepseekV3Config
1253
+ base_model_prefix = "model"
1254
+ supports_gradient_checkpointing = True
1255
+ _no_split_modules = ["DeepseekV3DecoderLayer"]
1256
+ _skip_keys_device_placement = "past_key_values"
1257
+ _supports_flash_attn_2 = True
1258
+ _supports_cache_class = True
1259
+
1260
+ def _init_weights(self, module):
1261
+ std = self.config.initializer_range
1262
+ if isinstance(module, nn.Linear):
1263
+ module.weight.data.normal_(mean=0.0, std=std)
1264
+ if module.bias is not None:
1265
+ module.bias.data.zero_()
1266
+ elif isinstance(module, nn.Embedding):
1267
+ module.weight.data.normal_(mean=0.0, std=std)
1268
+ if module.padding_idx is not None:
1269
+ module.weight.data[module.padding_idx].zero_()
1270
+
1271
+
1272
+ DeepseekV3_INPUTS_DOCSTRING = r"""
1273
+ Args:
1274
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1275
+ Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1276
+ it.
1277
+
1278
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1279
+ [`PreTrainedTokenizer.__call__`] for details.
1280
+
1281
+ [What are input IDs?](../glossary#input-ids)
1282
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1283
+ Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1284
+
1285
+ - 1 for tokens that are **not masked**,
1286
+ - 0 for tokens that are **masked**.
1287
+
1288
+ [What are attention masks?](../glossary#attention-mask)
1289
+
1290
+ Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1291
+ [`PreTrainedTokenizer.__call__`] for details.
1292
+
1293
+ If `past_key_values` is used, optionally only the last `input_ids` have to be input (see
1294
+ `past_key_values`).
1295
+
1296
+ If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
1297
+ and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
1298
+ information on the default strategy.
1299
+
1300
+ - 1 indicates the head is **not masked**,
1301
+ - 0 indicates the head is **masked**.
1302
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1303
+ Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1304
+ config.n_positions - 1]`.
1305
+
1306
+ [What are position IDs?](../glossary#position-ids)
1307
+ past_key_values (`Cache` or `tuple(tuple(torch.FloatTensor))`, *optional*):
1308
+ Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
1309
+ blocks) that can be used to speed up sequential decoding. This typically consists in the `past_key_values`
1310
+ returned by the model at a previous stage of decoding, when `use_cache=True` or `config.use_cache=True`.
1311
+
1312
+ Two formats are allowed:
1313
+ - a [`~cache_utils.Cache`] instance;
1314
+ - Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of
1315
+ shape `(batch_size, num_heads, sequence_length, embed_size_per_head)`). This is also known as the legacy
1316
+ cache format.
1317
+
1318
+ The model will output the same cache format that is fed as input. If no `past_key_values` are passed, the
1319
+ legacy cache format will be returned.
1320
+
1321
+ If `past_key_values` are used, the user can optionally input only the last `input_ids` (those that don't
1322
+ have their past key value states given to this model) of shape `(batch_size, 1)` instead of all `input_ids`
1323
+ of shape `(batch_size, sequence_length)`.
1324
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1325
+ Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1326
+ is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1327
+ model's internal embedding lookup matrix.
1328
+ use_cache (`bool`, *optional*):
1329
+ If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1330
+ `past_key_values`).
1331
+ output_attentions (`bool`, *optional*):
1332
+ Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1333
+ tensors for more detail.
1334
+ output_hidden_states (`bool`, *optional*):
1335
+ Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1336
+ more detail.
1337
+ return_dict (`bool`, *optional*):
1338
+ Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1339
+ """
1340
+
1341
+
1342
+ @add_start_docstrings(
1343
+ "The bare DeepseekV3 Model outputting raw hidden-states without any specific head on top.",
1344
+ DeepseekV3_START_DOCSTRING,
1345
+ )
1346
+ class DeepseekV3Model(DeepseekV3PreTrainedModel):
1347
+ """
1348
+ Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`DeepseekV3DecoderLayer`]
1349
+
1350
+ Args:
1351
+ config: DeepseekV3Config
1352
+ """
1353
+
1354
+ def __init__(self, config: DeepseekV3Config):
1355
+ super().__init__(config)
1356
+ self.padding_idx = config.pad_token_id
1357
+ self.vocab_size = config.vocab_size
1358
+
1359
+ self.embed_tokens = nn.Embedding(
1360
+ config.vocab_size, config.hidden_size, self.padding_idx
1361
+ )
1362
+ self.layers = nn.ModuleList(
1363
+ [
1364
+ DeepseekV3DecoderLayer(config, layer_idx)
1365
+ for layer_idx in range(config.num_hidden_layers)
1366
+ ]
1367
+ )
1368
+ self._use_flash_attention_2 = config._attn_implementation == "flash_attention_2"
1369
+ self.norm = DeepseekV3RMSNorm(config.hidden_size, eps=config.rms_norm_eps)
1370
+
1371
+ self.gradient_checkpointing = False
1372
+ # Initialize weights and apply final processing
1373
+ self.post_init()
1374
+
1375
+ def get_input_embeddings(self):
1376
+ return self.embed_tokens
1377
+
1378
+ def set_input_embeddings(self, value):
1379
+ self.embed_tokens = value
1380
+
1381
+ @add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING)
1382
+ def forward(
1383
+ self,
1384
+ input_ids: torch.LongTensor = None,
1385
+ attention_mask: Optional[torch.Tensor] = None,
1386
+ position_ids: Optional[torch.LongTensor] = None,
1387
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1388
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1389
+ use_cache: Optional[bool] = None,
1390
+ output_attentions: Optional[bool] = None,
1391
+ output_hidden_states: Optional[bool] = None,
1392
+ return_dict: Optional[bool] = None,
1393
+ ) -> Union[Tuple, BaseModelOutputWithPast]:
1394
+ output_attentions = (
1395
+ output_attentions
1396
+ if output_attentions is not None
1397
+ else self.config.output_attentions
1398
+ )
1399
+ output_hidden_states = (
1400
+ output_hidden_states
1401
+ if output_hidden_states is not None
1402
+ else self.config.output_hidden_states
1403
+ )
1404
+ use_cache = use_cache if use_cache is not None else self.config.use_cache
1405
+
1406
+ return_dict = (
1407
+ return_dict if return_dict is not None else self.config.use_return_dict
1408
+ )
1409
+
1410
+ # retrieve input_ids and inputs_embeds
1411
+ if input_ids is not None and inputs_embeds is not None:
1412
+ raise ValueError(
1413
+ "You cannot specify both input_ids and inputs_embeds at the same time"
1414
+ )
1415
+ elif input_ids is not None:
1416
+ batch_size, seq_length = input_ids.shape[:2]
1417
+ elif inputs_embeds is not None:
1418
+ batch_size, seq_length = inputs_embeds.shape[:2]
1419
+ else:
1420
+ raise ValueError("You have to specify either input_ids or inputs_embeds")
1421
+
1422
+ past_key_values_length = 0
1423
+ if use_cache:
1424
+ use_legacy_cache = not isinstance(past_key_values, Cache)
1425
+ if use_legacy_cache:
1426
+ past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1427
+ past_key_values_length = past_key_values.get_usable_length(seq_length)
1428
+
1429
+ if position_ids is None:
1430
+ device = input_ids.device if input_ids is not None else inputs_embeds.device
1431
+ position_ids = torch.arange(
1432
+ past_key_values_length,
1433
+ seq_length + past_key_values_length,
1434
+ dtype=torch.long,
1435
+ device=device,
1436
+ )
1437
+ position_ids = position_ids.unsqueeze(0)
1438
+
1439
+ if inputs_embeds is None:
1440
+ inputs_embeds = self.embed_tokens(input_ids)
1441
+
1442
+ if self._use_flash_attention_2:
1443
+ # 2d mask is passed through the layers
1444
+ attention_mask = (
1445
+ attention_mask
1446
+ if (attention_mask is not None and 0 in attention_mask)
1447
+ else None
1448
+ )
1449
+ else:
1450
+ # 4d mask is passed through the layers
1451
+ attention_mask = _prepare_4d_causal_attention_mask(
1452
+ attention_mask,
1453
+ (batch_size, seq_length),
1454
+ inputs_embeds,
1455
+ past_key_values_length,
1456
+ )
1457
+
1458
+ # embed positions
1459
+ hidden_states = inputs_embeds
1460
+
1461
+ # decoder layers
1462
+ all_hidden_states = () if output_hidden_states else None
1463
+ all_self_attns = () if output_attentions else None
1464
+ next_decoder_cache = None
1465
+
1466
+ for decoder_layer in self.layers:
1467
+ if output_hidden_states:
1468
+ all_hidden_states += (hidden_states,)
1469
+
1470
+ layer_outputs = decoder_layer(
1471
+ hidden_states,
1472
+ attention_mask=attention_mask,
1473
+ position_ids=position_ids,
1474
+ past_key_value=past_key_values,
1475
+ output_attentions=output_attentions,
1476
+ use_cache=use_cache,
1477
+ )
1478
+
1479
+ hidden_states = layer_outputs[0]
1480
+
1481
+ if use_cache:
1482
+ next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1483
+
1484
+ if output_attentions:
1485
+ all_self_attns += (layer_outputs[1],)
1486
+
1487
+ hidden_states = self.norm(hidden_states)
1488
+
1489
+ # add hidden states from the last decoder layer
1490
+ if output_hidden_states:
1491
+ all_hidden_states += (hidden_states,)
1492
+
1493
+ next_cache = None
1494
+ if use_cache:
1495
+ next_cache = (
1496
+ next_decoder_cache.to_legacy_cache()
1497
+ if use_legacy_cache
1498
+ else next_decoder_cache
1499
+ )
1500
+ if not return_dict:
1501
+ return tuple(
1502
+ v
1503
+ for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
1504
+ if v is not None
1505
+ )
1506
+ return BaseModelOutputWithPast(
1507
+ last_hidden_state=hidden_states,
1508
+ past_key_values=next_cache,
1509
+ hidden_states=all_hidden_states,
1510
+ attentions=all_self_attns,
1511
+ )
1512
+
1513
+
1514
+ class DeepseekV3ForCausalLM(DeepseekV3PreTrainedModel):
1515
+ _tied_weights_keys = ["lm_head.weight"]
1516
+
1517
+ def __init__(self, config):
1518
+ super().__init__(config)
1519
+ self.model = DeepseekV3Model(config)
1520
+ self.vocab_size = config.vocab_size
1521
+ self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
1522
+
1523
+ # Initialize weights and apply final processing
1524
+ self.post_init()
1525
+
1526
+ def get_input_embeddings(self):
1527
+ return self.model.embed_tokens
1528
+
1529
+ def set_input_embeddings(self, value):
1530
+ self.model.embed_tokens = value
1531
+
1532
+ def get_output_embeddings(self):
1533
+ return self.lm_head
1534
+
1535
+ def set_output_embeddings(self, new_embeddings):
1536
+ self.lm_head = new_embeddings
1537
+
1538
+ def set_decoder(self, decoder):
1539
+ self.model = decoder
1540
+
1541
+ def get_decoder(self):
1542
+ return self.model
1543
+
1544
+ @add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING)
1545
+ @replace_return_docstrings(
1546
+ output_type=CausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC
1547
+ )
1548
+ def forward(
1549
+ self,
1550
+ input_ids: torch.LongTensor = None,
1551
+ attention_mask: Optional[torch.Tensor] = None,
1552
+ position_ids: Optional[torch.LongTensor] = None,
1553
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1554
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1555
+ labels: Optional[torch.LongTensor] = None,
1556
+ use_cache: Optional[bool] = None,
1557
+ output_attentions: Optional[bool] = None,
1558
+ output_hidden_states: Optional[bool] = None,
1559
+ return_dict: Optional[bool] = None,
1560
+ ) -> Union[Tuple, CausalLMOutputWithPast]:
1561
+ r"""
1562
+ Args:
1563
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1564
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers.,
1565
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1566
+ (masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`.
1567
+
1568
+ Returns:
1569
+
1570
+ Example:
1571
+
1572
+ ```python
1573
+ >>> from transformers import AutoTokenizer, DeepseekV3ForCausalLM
1574
+
1575
+ >>> model = DeepseekV3ForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
1576
+ >>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
1577
+
1578
+ >>> prompt = "Hey, are you conscious? Can you talk to me?"
1579
+ >>> inputs = tokenizer(prompt, return_tensors="pt")
1580
+
1581
+ >>> # Generate
1582
+ >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1583
+ >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1584
+ "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1585
+ ```"""
1586
+ output_attentions = (
1587
+ output_attentions
1588
+ if output_attentions is not None
1589
+ else self.config.output_attentions
1590
+ )
1591
+ output_hidden_states = (
1592
+ output_hidden_states
1593
+ if output_hidden_states is not None
1594
+ else self.config.output_hidden_states
1595
+ )
1596
+ return_dict = (
1597
+ return_dict if return_dict is not None else self.config.use_return_dict
1598
+ )
1599
+
1600
+ # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1601
+ outputs = self.model(
1602
+ input_ids=input_ids,
1603
+ attention_mask=attention_mask,
1604
+ position_ids=position_ids,
1605
+ past_key_values=past_key_values,
1606
+ inputs_embeds=inputs_embeds,
1607
+ use_cache=use_cache,
1608
+ output_attentions=output_attentions,
1609
+ output_hidden_states=output_hidden_states,
1610
+ return_dict=return_dict,
1611
+ )
1612
+
1613
+ hidden_states = outputs[0]
1614
+ logits = self.lm_head(hidden_states)
1615
+ logits = logits.float()
1616
+
1617
+ loss = None
1618
+ if labels is not None:
1619
+ # Shift so that tokens < n predict n
1620
+ shift_logits = logits[..., :-1, :].contiguous()
1621
+ shift_labels = labels[..., 1:].contiguous()
1622
+ # Flatten the tokens
1623
+ loss_fct = CrossEntropyLoss()
1624
+ shift_logits = shift_logits.view(-1, self.config.vocab_size)
1625
+ shift_labels = shift_labels.view(-1)
1626
+ # Enable model parallelism
1627
+ shift_labels = shift_labels.to(shift_logits.device)
1628
+ loss = loss_fct(shift_logits, shift_labels)
1629
+
1630
+ if not return_dict:
1631
+ output = (logits,) + outputs[1:]
1632
+ return (loss,) + output if loss is not None else output
1633
+
1634
+ return CausalLMOutputWithPast(
1635
+ loss=loss,
1636
+ logits=logits,
1637
+ past_key_values=outputs.past_key_values,
1638
+ hidden_states=outputs.hidden_states,
1639
+ attentions=outputs.attentions,
1640
+ )
1641
+
1642
+ def prepare_inputs_for_generation(
1643
+ self,
1644
+ input_ids,
1645
+ past_key_values=None,
1646
+ attention_mask=None,
1647
+ inputs_embeds=None,
1648
+ **kwargs,
1649
+ ):
1650
+ if past_key_values is not None:
1651
+ if isinstance(past_key_values, Cache):
1652
+ cache_length = past_key_values.get_seq_length()
1653
+ past_length = past_key_values.seen_tokens
1654
+ max_cache_length = past_key_values.get_max_length()
1655
+ else:
1656
+ cache_length = past_length = past_key_values[0][0].shape[2]
1657
+ max_cache_length = None
1658
+
1659
+ # Keep only the unprocessed tokens:
1660
+ # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1661
+ # some of the inputs are exclusivelly passed as part of the cache (e.g. when passing input_embeds as
1662
+ # input)
1663
+ if (
1664
+ attention_mask is not None
1665
+ and attention_mask.shape[1] > input_ids.shape[1]
1666
+ ):
1667
+ input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1668
+ # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1669
+ # input_ids based on the past_length.
1670
+ elif past_length < input_ids.shape[1]:
1671
+ input_ids = input_ids[:, past_length:]
1672
+ # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1673
+
1674
+ # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1675
+ if (
1676
+ max_cache_length is not None
1677
+ and attention_mask is not None
1678
+ and cache_length + input_ids.shape[1] > max_cache_length
1679
+ ):
1680
+ attention_mask = attention_mask[:, -max_cache_length:]
1681
+
1682
+ position_ids = kwargs.get("position_ids", None)
1683
+ if attention_mask is not None and position_ids is None:
1684
+ # create position_ids on the fly for batch generation
1685
+ position_ids = attention_mask.long().cumsum(-1) - 1
1686
+ position_ids.masked_fill_(attention_mask == 0, 1)
1687
+ if past_key_values:
1688
+ position_ids = position_ids[:, -input_ids.shape[1] :]
1689
+
1690
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1691
+ if inputs_embeds is not None and past_key_values is None:
1692
+ model_inputs = {"inputs_embeds": inputs_embeds}
1693
+ else:
1694
+ model_inputs = {"input_ids": input_ids}
1695
+
1696
+ model_inputs.update(
1697
+ {
1698
+ "position_ids": position_ids,
1699
+ "past_key_values": past_key_values,
1700
+ "use_cache": kwargs.get("use_cache"),
1701
+ "attention_mask": attention_mask,
1702
+ }
1703
+ )
1704
+ return model_inputs
1705
+
1706
+ @staticmethod
1707
+ def _reorder_cache(past_key_values, beam_idx):
1708
+ reordered_past = ()
1709
+ for layer_past in past_key_values:
1710
+ reordered_past += (
1711
+ tuple(
1712
+ past_state.index_select(0, beam_idx.to(past_state.device))
1713
+ for past_state in layer_past
1714
+ ),
1715
+ )
1716
+ return reordered_past
1717
+
1718
+
1719
+ @add_start_docstrings(
1720
+ """
1721
+ The DeepseekV3 Model transformer with a sequence classification head on top (linear layer).
1722
+
1723
+ [`DeepseekV3ForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1724
+ (e.g. GPT-2) do.
1725
+
1726
+ Since it does classification on the last token, it requires to know the position of the last token. If a
1727
+ `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1728
+ no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1729
+ padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1730
+ each row of the batch).
1731
+ """,
1732
+ DeepseekV3_START_DOCSTRING,
1733
+ )
1734
+ class DeepseekV3ForSequenceClassification(DeepseekV3PreTrainedModel):
1735
+ def __init__(self, config):
1736
+ super().__init__(config)
1737
+ self.num_labels = config.num_labels
1738
+ self.model = DeepseekV3Model(config)
1739
+ self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1740
+
1741
+ # Initialize weights and apply final processing
1742
+ self.post_init()
1743
+
1744
+ def get_input_embeddings(self):
1745
+ return self.model.embed_tokens
1746
+
1747
+ def set_input_embeddings(self, value):
1748
+ self.model.embed_tokens = value
1749
+
1750
+ @add_start_docstrings_to_model_forward(DeepseekV3_INPUTS_DOCSTRING)
1751
+ def forward(
1752
+ self,
1753
+ input_ids: torch.LongTensor = None,
1754
+ attention_mask: Optional[torch.Tensor] = None,
1755
+ position_ids: Optional[torch.LongTensor] = None,
1756
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
1757
+ inputs_embeds: Optional[torch.FloatTensor] = None,
1758
+ labels: Optional[torch.LongTensor] = None,
1759
+ use_cache: Optional[bool] = None,
1760
+ output_attentions: Optional[bool] = None,
1761
+ output_hidden_states: Optional[bool] = None,
1762
+ return_dict: Optional[bool] = None,
1763
+ ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1764
+ r"""
1765
+ labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1766
+ Labels for computing the sequence classification/regression loss. Indices should be in `[0, transformers.,
1767
+ config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1768
+ `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1769
+ """
1770
+ return_dict = (
1771
+ return_dict if return_dict is not None else self.config.use_return_dict
1772
+ )
1773
+
1774
+ transformer_outputs = self.model(
1775
+ input_ids,
1776
+ attention_mask=attention_mask,
1777
+ position_ids=position_ids,
1778
+ past_key_values=past_key_values,
1779
+ inputs_embeds=inputs_embeds,
1780
+ use_cache=use_cache,
1781
+ output_attentions=output_attentions,
1782
+ output_hidden_states=output_hidden_states,
1783
+ return_dict=return_dict,
1784
+ )
1785
+ hidden_states = transformer_outputs[0]
1786
+ logits = self.score(hidden_states)
1787
+
1788
+ if input_ids is not None:
1789
+ batch_size = input_ids.shape[0]
1790
+ else:
1791
+ batch_size = inputs_embeds.shape[0]
1792
+
1793
+ if self.config.pad_token_id is None and batch_size != 1:
1794
+ raise ValueError(
1795
+ "Cannot handle batch sizes > 1 if no padding token is defined."
1796
+ )
1797
+ if self.config.pad_token_id is None:
1798
+ sequence_lengths = -1
1799
+ else:
1800
+ if input_ids is not None:
1801
+ sequence_lengths = (
1802
+ torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1803
+ ).to(logits.device)
1804
+ else:
1805
+ sequence_lengths = -1
1806
+
1807
+ pooled_logits = logits[
1808
+ torch.arange(batch_size, device=logits.device), sequence_lengths
1809
+ ]
1810
+
1811
+ loss = None
1812
+ if labels is not None:
1813
+ labels = labels.to(logits.device)
1814
+ if self.config.problem_type is None:
1815
+ if self.num_labels == 1:
1816
+ self.config.problem_type = "regression"
1817
+ elif self.num_labels > 1 and (
1818
+ labels.dtype == torch.long or labels.dtype == torch.int
1819
+ ):
1820
+ self.config.problem_type = "single_label_classification"
1821
+ else:
1822
+ self.config.problem_type = "multi_label_classification"
1823
+
1824
+ if self.config.problem_type == "regression":
1825
+ loss_fct = MSELoss()
1826
+ if self.num_labels == 1:
1827
+ loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1828
+ else:
1829
+ loss = loss_fct(pooled_logits, labels)
1830
+ elif self.config.problem_type == "single_label_classification":
1831
+ loss_fct = CrossEntropyLoss()
1832
+ loss = loss_fct(
1833
+ pooled_logits.view(-1, self.num_labels), labels.view(-1)
1834
+ )
1835
+ elif self.config.problem_type == "multi_label_classification":
1836
+ loss_fct = BCEWithLogitsLoss()
1837
+ loss = loss_fct(pooled_logits, labels)
1838
+ if not return_dict:
1839
+ output = (pooled_logits,) + transformer_outputs[1:]
1840
+ return ((loss,) + output) if loss is not None else output
1841
+
1842
+ return SequenceClassifierOutputWithPast(
1843
+ loss=loss,
1844
+ logits=pooled_logits,
1845
+ past_key_values=transformer_outputs.past_key_values,
1846
+ hidden_states=transformer_outputs.hidden_states,
1847
+ attentions=transformer_outputs.attentions,
1848
+ )
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<|begin▁of▁sentence|>",
7
+ "lstrip": false,
8
+ "normalized": true,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "clean_up_tokenization_spaces": false,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "<|end▁of▁sentence|>",
16
+ "lstrip": false,
17
+ "normalized": true,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "legacy": true,
22
+ "model_max_length": 131072,
23
+ "pad_token": {
24
+ "__type": "AddedToken",
25
+ "content": "<|end▁of▁sentence|>",
26
+ "lstrip": false,
27
+ "normalized": true,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ },
31
+ "sp_model_kwargs": {},
32
+ "unk_token": null,
33
+ "tokenizer_class": "LlamaTokenizerFast",
34
+ "chat_template": "{% if not add_generation_prompt is defined %}{% set add_generation_prompt = false %}{% endif %}{% if not thinking is defined %}{% set thinking = false %}{% endif %}{% set ns = namespace(is_first=false, is_tool=false, system_prompt='', is_first_sp=true, is_last_user=false) %}{%- for message in messages %}{%- if message['role'] == 'system' %}{%- if ns.is_first_sp %}{% set ns.system_prompt = ns.system_prompt + message['content'] %}{% set ns.is_first_sp = false %}{%- else %}{% set ns.system_prompt = ns.system_prompt + '\n\n' + message['content'] %}{%- endif %}{%- endif %}{%- endfor %}{{ bos_token }}{{ ns.system_prompt }}{%- for message in messages %}{%- if message['role'] == 'user' %}{%- set ns.is_tool = false -%}{%- set ns.is_first = false -%}{%- set ns.is_last_user = true -%}{{'<|User|>' + message['content']}}{%- endif %}{%- if message['role'] == 'assistant' and message['tool_calls'] is defined and message['tool_calls'] is not none %}{%- if ns.is_last_user %}{{'<|Assistant|></think>'}}{%- endif %}{%- set ns.is_last_user = false -%}{%- set ns.is_first = false %}{%- set ns.is_tool = false -%}{%- for tool in message['tool_calls'] %}{%- if not ns.is_first %}{%- if message['content'] is none %}{{'<|tool▁calls▁begin|><|tool▁call▁begin|>'+ tool['function']['name'] + '<|tool▁sep|>' + tool['function']['arguments'] + '<|tool▁call▁end|>'}}{%- else %}{{message['content'] + '<|tool▁calls▁begin|><|tool▁call▁begin|>' + tool['function']['name'] + '<|tool▁sep|>' + tool['function']['arguments'] + '<|tool▁call▁end|>'}}{%- endif %}{%- set ns.is_first = true -%}{%- else %}{{'<|tool▁call▁begin|>'+ tool['function']['name'] + '<|tool▁sep|>' + tool['function']['arguments'] + '<|tool▁call▁end|>'}}{%- endif %}{%- endfor %}{{'<|tool▁calls▁end|><|end▁of▁sentence|>'}}{%- endif %}{%- if message['role'] == 'assistant' and (message['tool_calls'] is not defined or message['tool_calls'] is none) %}{%- if ns.is_last_user %}{{'<|Assistant|>'}}{%- if message['prefix'] is defined and message['prefix'] and thinking %}{{'<think>'}} {%- else %}{{'</think>'}}{%- endif %}{%- endif %}{%- set ns.is_last_user = false -%}{%- if ns.is_tool %}{{message['content'] + '<|end▁of▁sentence|>'}}{%- set ns.is_tool = false -%}{%- else %}{%- set content = message['content'] -%}{%- if '</think>' in content %}{%- set content = content.split('</think>', 1)[1] -%}{%- endif %}{{content + '<|end▁of▁sentence|>'}}{%- endif %}{%- endif %}{%- if message['role'] == 'tool' %}{%- set ns.is_last_user = false -%}{%- set ns.is_tool = true -%}{{'<|tool▁output▁begin|>' + message['content'] + '<|tool▁output▁end|>'}}{%- endif %}{%- endfor -%}{%- if add_generation_prompt and ns.is_last_user and not ns.is_tool %}{{'<|Assistant|>'}}{%- if not thinking %}{{'</think>'}}{%- else %}{{'<think>'}}{%- endif %}{% endif %}"
35
+ }