--- language: - ru license: apache-2.0 library_name: transformers pipeline_tag: text2text-generation tags: - keyphrase-generation - russian - t5 base_model: - sberbank-ai/ruT5-base datasets: - aglazkova/keyphrase_extraction_russian model-index: - name: ruT5 keyphrase generator results: - task: type: text2text-generation name: Keyphrase Generation dataset: name: aglazkova/keyphrase_extraction_russian type: aglazkova/keyphrase_extraction_russian metrics: - type: rougeL value: 0.XX - type: exact_match value: 0.XX --- # ruT5 Keyphrase Generator (Russian) **Base model:** `sberbank-ai/ruT5-base` **Dataset:** `aglazkova/keyphrase_extraction_russian` ## Usage ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tok = AutoTokenizer.from_pretrained("denis-gordeev/rut5-keyphrase-ru", use_fast=False) mdl = AutoModelForSeq2SeqLM.from_pretrained("denis-gordeev/rut5-keyphrase-ru") text = "keyphrase: Новая модель обнаруживает аномалии в банковских транзакциях..." inp = tok(text, return_tensors="pt") out = mdl.generate(**inp, max_new_tokens=64, num_beams=4, no_repeat_ngram_size=3) print(tok.decode(out[0], skip_special_tokens=True))