File size: 29,731 Bytes
7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 96f8fcf 7a971f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 |
---
language:
- en
license: apache-2.0
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:321
- loss:MatryoshkaLoss
- loss:MultipleNegativesRankingLoss
base_model: nomic-ai/modernbert-embed-base
widget:
- source_sentence: Since what year have they been married?
sentences:
- 'Graph: Team Coco Knowledge Graph
Node ID: 2015_conan_cuba
Category: events
Name: Conan in Cuba
Type: Event
Description: Conan O''Brien traveled to Havana to film a historic episode—the
first by an American late-night host in over 50 years—part of his ''Conan Without
Borders'' specials.
Relationships:
- Host conan_obrien
- Occurred during conan_tbs'
- 'Description: Liza Powel O''Brien is an American playwright and podcast host.
She met Conan O''Brien in 2000 while working at an advertising agency, and they
married in 2002. She has written numerous plays staged at theaters like the Geffen
Playhouse and Ojai Playwrights Conference, and in 2022 she launched the history
podcast "Significant Others" on Conan''s Team Coco network.'
- "Relationships:\n- Spouse conan_obrien (Strength: very strong)\n Description:\
\ Married since 2002; they have two children together.\n- Podcast host team_coco\
\ (Strength: moderate)\n Description: Hosts the \"Significant Others\" podcast\
\ under the Team Coco banner."
- source_sentence: Which team produced Conan's final late night episode?
sentences:
- 'Graph: Team Coco Knowledge Graph
Node ID: 2021_conan_finale
Category: events
Name: Conan''s Final Late Night Episode
Type: Event
Description: The final episode of ''Conan'' on TBS, marking the end of Conan O''Brien''s
28-year run as a late-night host with heartfelt goodbyes and memorable comedy
moments.
Relationships:
- Honoree conan_obrien
- Participant andy_richter
- Producer team_coco'
- 'References:
- ([Conan O''Brien - Wikipedia](https://en.wikipedia.org/wiki/Conan_O%27Brien))
- ([Andy Richter Net Worth | Celebrity Net Worth](https://www.celebritynetworth.com))'
- 'Description: Airing on SiriusXM''s Team Coco Radio channel.'
- source_sentence: What type of document is referenced for the tour?
sentences:
- "Relationships:\n- Late-night host conan_obrien (Strength: core talent)\n Description:\
\ Conan's break in late night came through NBC.\n- Production partner conaco (Strength:\
\ strong)\n Description: NBC worked with Conaco on Conan's shows.\n\nAwards and\
\ Recognitions:\n- Legacy of late-night programming"
- 'Major Events:
- 1993 Joined ''Late Night'' with Conan
- 2009 Transitioned to ''The Tonight Show''
- 2010 Concluded run as Conan''s bandleader'
- 'References:
- ([The Legally Prohibited from Being Funny on Television Tour - Wikipedia](https://en.wikipedia.org/wiki/The_Legally_Prohibited_from_Being_Funny_on_Television_Tour))'
- source_sentence: In what year did Triumph the Insult Comic Dog debut?
sentences:
- "Relationships:\n- Host-guest (Prankster) conan_obrien (Strength: moderate)\n\
\ Description: Repeatedly played the 'Mac and Me' gag, to Conan's feigned exasperation.\n\
\nMajor Events:\n- 2004 First Mac and Me Gag on 'Late Night'\n- 2021 Final TBS\
\ Show Prank cameo"
- 'Awards and Recognitions:
- MFA in Fiction Writing from Columbia University
- Playwright with works at the Geffen Playhouse and Ojai Playwrights Conference
- Host of the "Significant Others" podcast (2022–present)'
- 'Graph: Team Coco Knowledge Graph
Node ID: triumph_insult_comic_dog
Category: creative works
Name: Triumph the Insult Comic Dog
Type: Puppet character
Description: A recurring canine puppet character, voiced by Robert Smigel, that
debuted on Conan''s ''Late Night'' in 1997, known for roasting celebrities and
absurd humor.
Relationships:
- Creator/performer robert_smigel
- Host platform conan_obrien'
- source_sentence: Who are the hosts of The Conan & Jordan Show?
sentences:
- 'Awards and Recognitions:
- 7 Primetime Emmy nominations for writing on Conan''s shows
- 10 WGA Award nominations (with 2 wins)
- 2 Daytime Emmy nominations for Animated Program performance
Major Events:
- 1993 Late Night Debut – Joined Conan''s first show as sidekick.
- 2000 Departure – Left ''Late Night'' to pursue acting.
- 2010 Tour & TBS Move – Reunited with Conan on the live tour and TBS.'
- 'Graph: Team Coco Knowledge Graph
Node ID: the_conan_and_jordan_show
Category: shows
Name: The Conan & Jordan Show (radio program)
Type: Show
Description: A spin-off audio series on SiriusXM''s Team Coco Radio, launched
in 2023, featuring Conan O''Brien and Jordan Schlansky continuing their comedic
odd-couple dynamic.'
- 'Major Events:
- 2010 Premiere – ''Conan'' debuted on TBS.
- 2015 ''Conan Without Borders'' – International travel specials aired.
- 2021 Finale – Conan ended his TBS run.
References:
- ([Conan O''Brien - Wikipedia](https://en.wikipedia.org/wiki/Conan_O%27Brien))'
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_accuracy@3
- cosine_accuracy@5
- cosine_accuracy@10
- cosine_precision@1
- cosine_precision@3
- cosine_precision@5
- cosine_precision@10
- cosine_recall@1
- cosine_recall@3
- cosine_recall@5
- cosine_recall@10
- cosine_ndcg@10
- cosine_mrr@10
- cosine_map@100
model-index:
- name: Fine-tuned with [QuicKB](https://github.com/ALucek/QuicKB)
results:
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 768
type: dim_768
metrics:
- type: cosine_accuracy@1
value: 0.7222222222222222
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8611111111111112
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9166666666666666
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9444444444444444
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.7222222222222222
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2870370370370371
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18333333333333338
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09444444444444446
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.7222222222222222
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8611111111111112
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9166666666666666
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9444444444444444
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8363985989991439
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.800925925925926
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.8041634291634291
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 512
type: dim_512
metrics:
- type: cosine_accuracy@1
value: 0.6944444444444444
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8888888888888888
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9166666666666666
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9722222222222222
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6944444444444444
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.29629629629629634
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18333333333333335
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09722222222222224
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6944444444444444
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8888888888888888
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9166666666666666
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9722222222222222
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8349701465406345
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7909722222222222
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.791703216374269
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 256
type: dim_256
metrics:
- type: cosine_accuracy@1
value: 0.6666666666666666
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8611111111111112
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9166666666666666
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9444444444444444
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6666666666666666
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.28703703703703703
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18333333333333335
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09444444444444446
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6666666666666666
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8611111111111112
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9166666666666666
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9444444444444444
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.8074890903790802
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7627314814814814
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7662037037037037
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 128
type: dim_128
metrics:
- type: cosine_accuracy@1
value: 0.6388888888888888
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.8611111111111112
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.9166666666666666
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9444444444444444
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6388888888888888
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2870370370370371
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.18333333333333338
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09444444444444446
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6388888888888888
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.8611111111111112
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.9166666666666666
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9444444444444444
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.803777679552595
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7574074074074074
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7597654530591711
name: Cosine Map@100
- task:
type: information-retrieval
name: Information Retrieval
dataset:
name: dim 64
type: dim_64
metrics:
- type: cosine_accuracy@1
value: 0.6111111111111112
name: Cosine Accuracy@1
- type: cosine_accuracy@3
value: 0.7777777777777778
name: Cosine Accuracy@3
- type: cosine_accuracy@5
value: 0.8333333333333334
name: Cosine Accuracy@5
- type: cosine_accuracy@10
value: 0.9166666666666666
name: Cosine Accuracy@10
- type: cosine_precision@1
value: 0.6111111111111112
name: Cosine Precision@1
- type: cosine_precision@3
value: 0.2592592592592593
name: Cosine Precision@3
- type: cosine_precision@5
value: 0.16666666666666669
name: Cosine Precision@5
- type: cosine_precision@10
value: 0.09166666666666669
name: Cosine Precision@10
- type: cosine_recall@1
value: 0.6111111111111112
name: Cosine Recall@1
- type: cosine_recall@3
value: 0.7777777777777778
name: Cosine Recall@3
- type: cosine_recall@5
value: 0.8333333333333334
name: Cosine Recall@5
- type: cosine_recall@10
value: 0.9166666666666666
name: Cosine Recall@10
- type: cosine_ndcg@10
value: 0.7608354868794361
name: Cosine Ndcg@10
- type: cosine_mrr@10
value: 0.7111441798941799
name: Cosine Mrr@10
- type: cosine_map@100
value: 0.7139831037236697
name: Cosine Map@100
---
# Fine-tuned with [QuicKB](https://github.com/ALucek/QuicKB)
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [nomic-ai/modernbert-embed-base](https://huggingface.co/nomic-ai/modernbert-embed-base) <!-- at revision d556a88e332558790b210f7bdbe87da2fa94a8d8 -->
- **Maximum Sequence Length:** 1024 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
<!-- - **Training Dataset:** Unknown -->
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 1024, 'do_lower_case': False}) with Transformer model: ModernBertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("densonsmith/modernbert-embed-quickb")
# Run inference
sentences = [
'Who are the hosts of The Conan & Jordan Show?',
"Graph: Team Coco Knowledge Graph\nNode ID: the_conan_and_jordan_show\nCategory: shows\nName: The Conan & Jordan Show (radio program)\nType: Show\n\nDescription: A spin-off audio series on SiriusXM's Team Coco Radio, launched in 2023, featuring Conan O'Brien and Jordan Schlansky continuing their comedic odd-couple dynamic.",
"Awards and Recognitions:\n- 7 Primetime Emmy nominations for writing on Conan's shows\n- 10 WGA Award nominations (with 2 wins)\n- 2 Daytime Emmy nominations for Animated Program performance\n\nMajor Events:\n- 1993 Late Night Debut – Joined Conan's first show as sidekick.\n- 2000 Departure – Left 'Late Night' to pursue acting.\n- 2010 Tour & TBS Move – Reunited with Conan on the live tour and TBS.",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Information Retrieval
* Datasets: `dim_768`, `dim_512`, `dim_256`, `dim_128` and `dim_64`
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
| Metric | dim_768 | dim_512 | dim_256 | dim_128 | dim_64 |
|:--------------------|:-----------|:----------|:-----------|:-----------|:-----------|
| cosine_accuracy@1 | 0.7222 | 0.6944 | 0.6667 | 0.6389 | 0.6111 |
| cosine_accuracy@3 | 0.8611 | 0.8889 | 0.8611 | 0.8611 | 0.7778 |
| cosine_accuracy@5 | 0.9167 | 0.9167 | 0.9167 | 0.9167 | 0.8333 |
| cosine_accuracy@10 | 0.9444 | 0.9722 | 0.9444 | 0.9444 | 0.9167 |
| cosine_precision@1 | 0.7222 | 0.6944 | 0.6667 | 0.6389 | 0.6111 |
| cosine_precision@3 | 0.287 | 0.2963 | 0.287 | 0.287 | 0.2593 |
| cosine_precision@5 | 0.1833 | 0.1833 | 0.1833 | 0.1833 | 0.1667 |
| cosine_precision@10 | 0.0944 | 0.0972 | 0.0944 | 0.0944 | 0.0917 |
| cosine_recall@1 | 0.7222 | 0.6944 | 0.6667 | 0.6389 | 0.6111 |
| cosine_recall@3 | 0.8611 | 0.8889 | 0.8611 | 0.8611 | 0.7778 |
| cosine_recall@5 | 0.9167 | 0.9167 | 0.9167 | 0.9167 | 0.8333 |
| cosine_recall@10 | 0.9444 | 0.9722 | 0.9444 | 0.9444 | 0.9167 |
| **cosine_ndcg@10** | **0.8364** | **0.835** | **0.8075** | **0.8038** | **0.7608** |
| cosine_mrr@10 | 0.8009 | 0.791 | 0.7627 | 0.7574 | 0.7111 |
| cosine_map@100 | 0.8042 | 0.7917 | 0.7662 | 0.7598 | 0.714 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### Unnamed Dataset
* Size: 321 training samples
* Columns: <code>anchor</code> and <code>positive</code>
* Approximate statistics based on the first 321 samples:
| | anchor | positive |
|:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
| type | string | string |
| details | <ul><li>min: 7 tokens</li><li>mean: 14.03 tokens</li><li>max: 24 tokens</li></ul> | <ul><li>min: 15 tokens</li><li>mean: 74.79 tokens</li><li>max: 117 tokens</li></ul> |
* Samples:
| anchor | positive |
|:--------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <code>What brand did Jeff Ross help establish?</code> | <code>Graph: Team Coco Knowledge Graph<br>Node ID: jeff_ross_producer<br>Category: people<br>Name: Jeff Ross (Producer)<br>Type: Person<br><br>Description: Jeff Ross is a television producer who has served as Conan O'Brien's executive producer since 1993. He is a key business partner in Conan's media ventures and helped establish the Team Coco brand.</code> |
| <code>In what year did Conan O'Brien launch the travel show 'Conan O'Brien Must Go'?</code> | <code>Description: Conan O'Brien is an American television host, comedian, writer, actor, and producer, best known for hosting late-night shows including "Late Night with Conan O'Brien", "The Tonight Show with Conan O'Brien", and "Conan". He also hosts the podcast "Conan O'Brien Needs a Friend" and, in 2024, launched the travel show "Conan O'Brien Must Go" on Max.</code> |
| <code>What is the strength of the network TBS?</code> | <code>- Network tbs (Strength: parent)<br> Description: TBS provided the platform for the show.</code> |
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
```json
{
"loss": "MultipleNegativesRankingLoss",
"matryoshka_dims": [
768,
512,
256,
128,
64
],
"matryoshka_weights": [
1,
1,
1,
1,
1
],
"n_dims_per_step": -1
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `eval_strategy`: epoch
- `per_device_train_batch_size`: 4
- `gradient_accumulation_steps`: 16
- `learning_rate`: 2e-05
- `num_train_epochs`: 4
- `lr_scheduler_type`: cosine
- `warmup_ratio`: 0.1
- `bf16`: True
- `tf32`: True
- `load_best_model_at_end`: True
- `optim`: adamw_torch_fused
- `batch_sampler`: no_duplicates
#### All Hyperparameters
<details><summary>Click to expand</summary>
- `overwrite_output_dir`: False
- `do_predict`: False
- `eval_strategy`: epoch
- `prediction_loss_only`: True
- `per_device_train_batch_size`: 4
- `per_device_eval_batch_size`: 8
- `per_gpu_train_batch_size`: None
- `per_gpu_eval_batch_size`: None
- `gradient_accumulation_steps`: 16
- `eval_accumulation_steps`: None
- `torch_empty_cache_steps`: None
- `learning_rate`: 2e-05
- `weight_decay`: 0.0
- `adam_beta1`: 0.9
- `adam_beta2`: 0.999
- `adam_epsilon`: 1e-08
- `max_grad_norm`: 1.0
- `num_train_epochs`: 4
- `max_steps`: -1
- `lr_scheduler_type`: cosine
- `lr_scheduler_kwargs`: {}
- `warmup_ratio`: 0.1
- `warmup_steps`: 0
- `log_level`: passive
- `log_level_replica`: warning
- `log_on_each_node`: True
- `logging_nan_inf_filter`: True
- `save_safetensors`: True
- `save_on_each_node`: False
- `save_only_model`: False
- `restore_callback_states_from_checkpoint`: False
- `no_cuda`: False
- `use_cpu`: False
- `use_mps_device`: False
- `seed`: 42
- `data_seed`: None
- `jit_mode_eval`: False
- `use_ipex`: False
- `bf16`: True
- `fp16`: False
- `fp16_opt_level`: O1
- `half_precision_backend`: auto
- `bf16_full_eval`: False
- `fp16_full_eval`: False
- `tf32`: True
- `local_rank`: 0
- `ddp_backend`: None
- `tpu_num_cores`: None
- `tpu_metrics_debug`: False
- `debug`: []
- `dataloader_drop_last`: False
- `dataloader_num_workers`: 0
- `dataloader_prefetch_factor`: None
- `past_index`: -1
- `disable_tqdm`: False
- `remove_unused_columns`: True
- `label_names`: None
- `load_best_model_at_end`: True
- `ignore_data_skip`: False
- `fsdp`: []
- `fsdp_min_num_params`: 0
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
- `fsdp_transformer_layer_cls_to_wrap`: None
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
- `deepspeed`: None
- `label_smoothing_factor`: 0.0
- `optim`: adamw_torch_fused
- `optim_args`: None
- `adafactor`: False
- `group_by_length`: False
- `length_column_name`: length
- `ddp_find_unused_parameters`: None
- `ddp_bucket_cap_mb`: None
- `ddp_broadcast_buffers`: False
- `dataloader_pin_memory`: True
- `dataloader_persistent_workers`: False
- `skip_memory_metrics`: True
- `use_legacy_prediction_loop`: False
- `push_to_hub`: False
- `resume_from_checkpoint`: None
- `hub_model_id`: None
- `hub_strategy`: every_save
- `hub_private_repo`: None
- `hub_always_push`: False
- `gradient_checkpointing`: False
- `gradient_checkpointing_kwargs`: None
- `include_inputs_for_metrics`: False
- `include_for_metrics`: []
- `eval_do_concat_batches`: True
- `fp16_backend`: auto
- `push_to_hub_model_id`: None
- `push_to_hub_organization`: None
- `mp_parameters`:
- `auto_find_batch_size`: False
- `full_determinism`: False
- `torchdynamo`: None
- `ray_scope`: last
- `ddp_timeout`: 1800
- `torch_compile`: False
- `torch_compile_backend`: None
- `torch_compile_mode`: None
- `dispatch_batches`: None
- `split_batches`: None
- `include_tokens_per_second`: False
- `include_num_input_tokens_seen`: False
- `neftune_noise_alpha`: None
- `optim_target_modules`: None
- `batch_eval_metrics`: False
- `eval_on_start`: False
- `use_liger_kernel`: False
- `eval_use_gather_object`: False
- `average_tokens_across_devices`: False
- `prompts`: None
- `batch_sampler`: no_duplicates
- `multi_dataset_batch_sampler`: proportional
</details>
### Training Logs
| Epoch | Step | Training Loss | dim_768_cosine_ndcg@10 | dim_512_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 |
|:-------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|
| 1.0 | 6 | - | 0.7909 | 0.8034 | 0.7711 | 0.7992 | 0.6908 |
| 1.7901 | 10 | 16.3044 | - | - | - | - | - |
| **2.0** | **12** | **-** | **0.8364** | **0.8294** | **0.8022** | **0.8038** | **0.7691** |
| 3.0 | 18 | - | 0.8364 | 0.8313 | 0.8059 | 0.7938 | 0.7599 |
| 3.3951 | 20 | 5.6348 | 0.8364 | 0.8350 | 0.8075 | 0.8038 | 0.7608 |
* The bold row denotes the saved checkpoint.
### Framework Versions
- Python: 3.12.4
- Sentence Transformers: 3.4.0
- Transformers: 4.48.1
- PyTorch: 2.5.1+cu124
- Accelerate: 1.3.0
- Datasets: 3.2.0
- Tokenizers: 0.21.1
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
#### MatryoshkaLoss
```bibtex
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
```
#### MultipleNegativesRankingLoss
```bibtex
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |