dhruvnayee commited on
Commit
fa608d1
·
verified ·
1 Parent(s): 5c4eb0b

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 1024,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,785 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - dense
7
+ - generated_from_trainer
8
+ - dataset_size:16909
9
+ - loss:TripletLoss
10
+ base_model: BAAI/bge-large-en-v1.5
11
+ widget:
12
+ - source_sentence: Under what conditions is the default start position of 1 used for
13
+ a dimension in the resulting array?
14
+ sentences:
15
+ - "Array variables example 3: Variable Unit_Prices\n\nInheritance of dimension start\
16
+ \ position and index values in numerical\nexpressions.\n\nThe following non-aggregating\
17
+ \ non-portfolio 1-dimensional array currency variables are defined in\nthe assumption\
18
+ \ set Assumption_Set (in all cases the dimension name is Fund and it has character\n\
19
+ index values):\n\n | Dimension properties | \nVariable | Size | Start\n \
20
+ \ position | Indices | Array elements\nUnit_Prices\
21
+ \ | 3 | 101 | \"A\", \"B\", \"C\" | 1.25, 0.93, 1.81\nUnit_Prices_2 | 3 | 101\
22
+ \ | \"A\", \"B\", \"C\" | 1.21, 0.97, 1.73\nUnit_Prices_3 | 3 | 201 | \"A\", \"\
23
+ B\", \"C\" | 1.32, 0.79, 1.35\nUnit_Prices_4 | 3 | 101 | \"X\", \"Y\", \"Z\" |\
24
+ \ 1.12, 0.89, 1.97\nUnit_Prices_5 | 2 | 102 | \"B\", \"C\" | 0.93, 1.93\nUnit_Prices_6\
25
+ \ | 3 | 201 | \"X\", \"Y\", \"Z\" | 1.19, 0.98, 1.95\n\nThese variables are used\
26
+ \ in the formula of the following variables in the program Program in the\nprojection\
27
+ \ process Projection_Process, which is used in the model Array_Model (all these\
28
+ \ variables\nhave a single dimension called Fund):\n\n | | Dimension properties\
29
+ \ | \nVariable | Formula | Size | Start position | Indices | Array elements\n\
30
+ Variable_21 | Unit_Prices - Unit_Prices_2 | 3 | 101 | \"A\", \"B\", \"C\" | 0.04,\
31
+ \ -0.04, 0.08\nVariable_22 | Unit_Prices - Unit_Prices_3 | 3 | 1 | \"A\", \"B\"\
32
+ , \"C\" | -0.07, 0.14, 0.46\nVariable_23 | Unit_Prices - Unit_Prices_4 | 3 | 101\
33
+ \ | (undefined) | 0.13, 0.04, -0.16\nVariable_24 | Unit_Prices[<Fund.index= \"\
34
+ B\" : \"C\">] - Unit_Prices_5 | 2 | 102 | (undefined) | 0, -0.12\nVariable_25\
35
+ \ | Unit_Prices - Unit_Prices_6 | 3 | 1 | (undefined) | 0.06, -0.05, -0.14\n\n\
36
+ Notes:\n\n* The rank of the arrays (number of dimensions), dimension names and\
37
+ \ dimension sizes must be\nidentical for such numerical expressions to be valid.\n\
38
+ * If the indices in a particular dimension are the same in both arrays, they will\
39
+ \ be inherited by\nthe resulting array, otherwise no indices will be defined in\
40
+ \ that dimension.\n* If the start positions in a particular dimension are the\
41
+ \ same in both arrays, they will be\ninherited by the resulting array, otherwise\
42
+ \ the default start position of 1 will be used in that\ndimension.\n* We could\
43
+ \ not have a formula like Unit_Prices - Unit_Prices_5, because these arrays have\n\
44
+ differently sized dimensions.\n* The subset of an array variable in the formula\
45
+ \ of Variable_24 loses its indices. This means that\nVariable_24 cannot inherit\
46
+ \ consistent indices and so none are defined for it.\n* The subset of an array\
47
+ \ variable in the formula of Variable_24 inherits the numbering of its\nelement\
48
+ \ positions from the variable Unit_Prices, so its start position is set to 102.\
49
+ \ This is the\nsame as the start position of Unit_Prices_5, so Variable_24 has\
50
+ \ its dimension start position set to\n102."
51
+ - "## Examples\n\nSuppose:\n\nVariable is a 2-dimensional array\n\n | Dimension\
52
+ \ name | Size | Start position\n1 | Dimension_1 | 2 | 4\n2 | Dimension_2 | 3 |\
53
+ \ 7\n\nDimension_2 | Dimension_1\nPosition = 4 | Position = 5\nPosition = 7 |\
54
+ \ 1 | 2\nPosition = 8 | 3 | 4\nPosition = 9 | 5 | 6\n\nThen:\n\nDimension_Start(Variable,\
55
+ \ <Dimension_1>)\n\n= 4\n\nDimension_Start(Variable, <Dimension_2>)\n\n= 7"
56
+ - '## Other situations where indices are lost
57
+
58
+
59
+ There are a number of other circumstances where the indices for an array dimension
60
+ are lost:
61
+
62
+
63
+ * If an array has a changeable dimension and the array is aggregated acrosseventsusing
64
+ the.totalextension, the indices in
65
+
66
+ that dimension will be lost.
67
+
68
+ * If an array has a changeable dimension and the array is passed from a sub layer
69
+ to a calling
70
+
71
+ layer then the indices in that dimension will be lost.
72
+
73
+ * If an array has a changeable dimension and the array is calculated in a stochastic
74
+ return value
75
+
76
+ variable then the indices in that dimension will be lost.'
77
+ - source_sentence: Where can I find examples of batches within the system?
78
+ sentences:
79
+ - "Grouping example 3: Admin_Grouping\n\nUsed in the Calculation grouping property\
80
+ \ of a parent program.\n\nThis grouping has the following properties:\n\nProperty\
81
+ \ | Value\nName | Admin_Grouping\nCategory | Policy\nDescription | Group by method\
82
+ \ of policy administration\nGroup identifier | Internet_Admin.text\n\nThis grouping\
83
+ \ contains just one group:\n\nProperty | Value\nName | Internet_Admin\nCategory\
84
+ \ | Policy\nDescription | Group Internet_Admin by value\nData type | Indicator\n\
85
+ Grouping expression | Internet_Admin\nMethod | By value\nRange boundaries | \n\
86
+ Boundary value in | [Range above]\n\nThe Grouping expression property is set to\
87
+ \ the indicator variable Internet_Admin, so the Data\ntype property must be set\
88
+ \ to\n\nIndicator\n\n.\n\nThe Method property is set to\n\nBy value\n\n(so the\
89
+ \ Range boundaries and Boundary value in\nproperties will be ignored) and the\
90
+ \ records will be grouped together according to the value of the\ngrouping expression.\
91
+ \ In the\n\ndata view\n\nTraditional_Data_View\n\nthe variable\nInternet_Admin\
92
+ \ is read from data, but is expected to take one of two possible values. Since\
93
+ \ this\nvariable defines the grouping expression of this group, there should be\
94
+ \ up to two groups. If the\ndata file contains additional values, there will be\
95
+ \ additional groups.\n\nThis grouping is specified as the\n\nCalculation grouping\n\
96
+ \nproperty of the program\n\nCompany\n\nof the projection process\n\nRealistic_Projection\n\
97
+ \n. This program is a parent program and the records being passed to it by\nits\
98
+ \ child programs will be grouped according to this grouping before being processed\
99
+ \ by the\nprogram.\n\nThe Group identifier property of the grouping will be used\
100
+ \ to provide the value of the\n\nsystem variable\n\nGroup_Identifier in this\n\
101
+ \nprogram\n\nand to provide a unique group\nidentifier for each of its groups.\
102
+ \ These group identifiers will be \"Internet_Admin=0\" and\n\"Internet_Admin=1\"\
103
+ ."
104
+ - "The main topic 'Batches' has the following related sub-topics:\n* **Batch examples**\
105
+ \ : \nThe example user workspace includes examples of batches."
106
+ - 'Batch examples
107
+
108
+
109
+ The example user workspace includes examples of batches.
110
+
111
+
112
+ No. | Name | Features
113
+
114
+ 1 | EV_Batch | Contains very similar models that have slightly different realistic
115
+ assumptions
116
+
117
+ 2 | EV_Batch_2 | Use of theModel string overrideproperty to access different external
118
+ assumption files'
119
+ - source_sentence: 'How does accessing a subset of an array using an expression like
120
+ `Array_1[<Fund.position = 3 : 6>]` affect the dimension start positions?'
121
+ sentences:
122
+ - "## Inheritance rules for the dimension start positions of an array variable\n\
123
+ \nAn array variable inherits the dimension start positions of the array variables\
124
+ \ in its formula\naccording to the points below.\n\nIt is not necessary for different\
125
+ \ assignments for an array variable to return the same start\nposition. For example,\
126
+ \ the following formula is valid even when Array_2 and Array_3 have different\n\
127
+ dimension start positions:\n\nIf Scalar_A > 3 Then\n Array_2\nElse\n \
128
+ \ Array_3\nEndIf\n\nAn array variable inherits the dimension start positions\
129
+ \ (and hence the element position numbers)\n of the arrays\
130
+ \ (after any function calls) used in its formula. It is not\n \
131
+ \ necessary for these to be identical. If the start positions in any dimension\n\
132
+ \ differ between arrays in a formula then\n\nR³S Modeler\n\
133
+ \nsets the\n start position in that dimension in the calculated\
134
+ \ array to the default\n value of 1. A message will be\
135
+ \ added to the\n\nIndex\n and Position Warnings\n\
136
+ \nfolder of the\n\nRun summary\n\nto\n indicate this has\
137
+ \ happened.\n\nSimple mathematical operations on an array will preserve the dimension\
138
+ \ start positions.\n\nAccessing a subset of an array with an expression like\n\
139
+ \nArray_1[<Fund\n\n.position\n\n= 3 :\n6>]\n\nwill cause the dimension start positions\
140
+ \ in the resulting array to be set so as to\npreserve the numbering of the element\
141
+ \ positions for all its elements. In this example, the start\nposition of the\
142
+ \ dimension Fund will be set to 3 in the resulting array.\n\nFunctions of arrays\
143
+ \ generally produce an array with the same dimension start positions as the\n\
144
+ inherited dimensions."
145
+ - "## Example 1: Step_Length_PS\n\nProperty | Value\nName | Step_Length_PS\nCategory\
146
+ \ | \nDescription | \nDocumentation | \n\nThis layer module contains no sub layer\
147
+ \ modules and just one layer variable:\n\nVariable | Layer module | Formula\n\
148
+ Step_Length_PS | Step_Length_PS | Duration(Step_Date.start, Step_Date.end, \"\
149
+ Years\", \"One\", \"Exact\")\n\nThis layer module is a sub layer module of the\
150
+ \ layer module Expense_Renewal."
151
+ - '## Accessing a subset of an array
152
+
153
+
154
+ Any dimension indices will always be inherited when accessing a subset of another
155
+ array with an
156
+
157
+ expression like Array_1[<Fund
158
+
159
+
160
+ .position
161
+
162
+
163
+ = 3 : 6>] or Array_1[<Fund
164
+
165
+
166
+ .position
167
+
168
+
169
+ = First_Fund :
170
+
171
+ Last_Fund>]. When it is not possible to determine both the start and end indices
172
+ or element
173
+
174
+ positions (that is, the variables First_Fund and Last_Fund in the second example)
175
+ until runtime and
176
+
177
+ the subset of the array variable is used in a mathematical expression then an
178
+ index and position
179
+
180
+ warning message will be issued to state that the indices for a dimension may not
181
+ match, and if not
182
+
183
+ that only one of the set of indices will be used which may lead to runtime errors
184
+ or misleading
185
+
186
+ results.'
187
+ - source_sentence: What kind of variable is Data_Process_Name considered?
188
+ sentences:
189
+ - 'Data_Process_Name
190
+
191
+
192
+ The
193
+
194
+
195
+ Data_Process_Name
196
+
197
+
198
+ system variable is a character variable that gives the name of the data process.
199
+
200
+
201
+ You can use this system variable in a data process in the data layer of a model.
202
+
203
+
204
+ This system variable is a placeholder variable.'
205
+ - "Assumption set example 4:\n Traditional_Reserve_Assumptions\n\nAn assumption\
206
+ \ set used as the assumption set of a sub layer containing an assumption set\n\
207
+ variable that references an assumption set variable in the assumption set of the\
208
+ \ calling layer using\nthe\n\nSource\n\nqualifier.\n\nThis example describes the\
209
+ \ assumptions that might be used in a sub layer to calculate reserve\nprovisions.\n\
210
+ \nAssumption set local properties:\n\nProperty | Value\nName | Traditional_Reserve_Assumptions\n\
211
+ Category | Traditional_Component\nDescription | Traditional (non-linked without-profit)\
212
+ \ reserve assumptions\nAssumption connection string | \n\nThis assumption set\
213
+ \ has no sub assumption sets.\n\nThis assumption set contains several assumption\
214
+ \ set variables. These variables have the following\nglobal properties (they all\
215
+ \ have their\n\nAggregates\n\nand\n\nPortfolio\n\nproperties set to\n\nNo\n\n\
216
+ ):\n\nVariable | Data type | Display format\nDisc_Rate_Reserve | Numeric | Per\
217
+ \ cent\nMort_Table_F | Life table | [None]\nMort_Table_M | Life table | [None]\n\
218
+ \nThey have the following local properties in this assumption set (they all have\
219
+ \ their\n\nAssumption table\n\nproperty left blank):\n\nVariable | Formula\nDisc_Rate_Reserve\
220
+ \ | Max(Source.Int_Rate - 3%, 0%)\nMort_Table_F | 105% *AM92\nMort_Table_M | 120%\
221
+ \ * AM92 + 1‰\n\nNotes:\n\n* TheSourcequalifier in the formula of Disc_Rate_Reserve\
222
+ \ specifies that the value of Int_Rate in\nthe calling layer is to be used.\n\
223
+ * The per cent (%) and per mille (‰) characters may be included in formulas and\
224
+ \ have the\neffect of dividing by 100 and 1000 respectively, so 3% is interpreted\
225
+ \ as 0.03 and 1‰ is\ninterpreted as 0.001.\n\nThis assumption set is specified\
226
+ \ in the local properties of the sub layers Reserve_Sub_Layer and\nReserve_Sub_Layer_2\
227
+ \ of the layer\n\nRealistic_Layer\n\nof the\nmodel\n\nEV_Model\n\n."
228
+ - '## New system variables
229
+
230
+
231
+ The system variables
232
+
233
+
234
+ Data_Process_Name
235
+
236
+
237
+ ,
238
+
239
+
240
+ Data_Source_Name
241
+
242
+
243
+ ,
244
+
245
+
246
+ Layer_Name
247
+
248
+
249
+ , and
250
+
251
+
252
+ Program_Name
253
+
254
+
255
+ are placeholder variables.'
256
+ - source_sentence: Is there a specific location where I can find workspace filters?
257
+ sentences:
258
+ - '## Windows
259
+
260
+
261
+ You can access the filters of a workspace in the grid of filters.
262
+
263
+
264
+ The filter window has most properties of the filter.'
265
+ - 'Category examples
266
+
267
+
268
+ The example user workspace includes examples of categories.
269
+
270
+
271
+ Some categories that might be useful in a present value of future profits model
272
+ include:
273
+
274
+
275
+ Name | Category type | Description
276
+
277
+ Ages_Dates_Durations | | Items relating to ages, dates and durations
278
+
279
+ Asset_Shares | | Items relating to asset shares
280
+
281
+ Benefits | | Items relating to benefits
282
+
283
+ Bonuses | | Items relating to bonuses
284
+
285
+ Cash_Flow_Module | Modules | Module for general cash flows
286
+
287
+ Cash_Flows | | Items relating to cash flows
288
+
289
+ Commission | | Items relating to commission
290
+
291
+ Commutation_Function_Reserve_Module | Modules | Module for reserving using commutation
292
+ functions
293
+
294
+ Decrements | | Decrement tables and rates
295
+
296
+ Economic | | Economic assumptions and variables
297
+
298
+ EU | Data flow | EU non-linked data
299
+
300
+ Data flow | | Items relating to expenses
301
+
302
+ Flags | | Items that are set as flags
303
+
304
+ Fund_Charges | | Items related to unit fund charges
305
+
306
+ General_Module | Modules | Module suitable for many situations
307
+
308
+ Interest | | Items relating to interest
309
+
310
+ Maturities | | Items relating to maturities
311
+
312
+ Mortality | | Items relating to mortality
313
+
314
+ Multiple_Currencies | | Component for use with a multiple currency model
315
+
316
+ NP_End | Data flow | Programs, data sources, and so on, for non-profit endowment
317
+ assurances
318
+
319
+ NP_Term | Data flow | Programs, data sources and so on for non-profit term assurances
320
+
321
+ NP_WoL | Data flow | Programs, data sources, and so on, for non-profit whole of
322
+ life assurances
323
+
324
+ Policy | | Items relating to policies
325
+
326
+ Premiums | | Items relating to premiums
327
+
328
+ Probabilities | | Items relating to probabilities
329
+
330
+ Profit | | Items relating to profit
331
+
332
+ PVFP | | Items relating to present value of future profits
333
+
334
+ PVFP_Module | Modules | Module for present value of future profits
335
+
336
+ Reserve_Module | Modules | Module for reserving by projection of cash flows
337
+
338
+ Reserves | | Items relating to reserves
339
+
340
+ Solvency_Margin | | Items relating to solvency margin
341
+
342
+ Statistics | | Items relating to statistics
343
+
344
+ Surrenders | | Items relating to surrenders
345
+
346
+ Tax | | Items relating to tax
347
+
348
+ Traditional | Data flow | Traditional/non-profit/conventional non-linked business
349
+
350
+ Traditional_Component | | Traditional/conventional/non-linked/non-profit business
351
+ component
352
+
353
+ UK | Data flow | UK non-linked data
354
+
355
+ Data flow | Data flow | Unit-linked endowment assurance
356
+
357
+ Unit_Fund | | Items related to the unit fund
358
+
359
+ Unit_Linked | Data flow | Programs, and so on, for unit linked business
360
+
361
+ Unit_Linked_Component | | Unit-linked business component
362
+
363
+ Unit_Linked_Module | Modules | Module for unit-linked business
364
+
365
+ US | Data flow | US non-linked data
366
+
367
+ Valuation | | Items relating to valuations
368
+
369
+
370
+ Categories provide the items on a drop-down list in the
371
+
372
+
373
+ Category
374
+
375
+
376
+ property that can be used to help organize related components.
377
+
378
+
379
+ There are different possible values for the Category type property, including:
380
+
381
+
382
+ * If the category type is left blank, it may be used for most components. For
383
+ example, there are assumption set variables within assumption sets, events and
384
+ variables within modules that have the category Expenses.
385
+
386
+ * Modules- This type of category applies only to modules, initialization modules
387
+ and layer modules. For example, the modules NP_End_PVFP, NP_Term_PVFP and NP_WoL_PVFP
388
+ have the modules category PVFP_Module.
389
+
390
+ * Data flow- This type of category applies only to data sources and programs.
391
+ Data from a
392
+
393
+ data source will only be processed by programs assigned to the same category as
394
+ that data source, so
395
+
396
+ data flow categories can be used to control the flow of data through a model.
397
+ For example, in the
398
+
399
+ modelEV_Model, the data sources in the data process
400
+
401
+ Traditional_Data_Process have the data flow category Traditional and will only
402
+ pass to the programs
403
+
404
+ in the projection processRealistic_Projectionthat have the data flow category
405
+ Traditional.'
406
+ - "Find/Replace Panel\n\nSee\n\nchoosers and panels\n\nfor information on\n displaying\
407
+ \ the Find/Replace Panel.\n\nThe Find/Replace Panel allows you to search for specific\
408
+ \ text in the\n\nproperties\n\nof the\n\ncomponents\n\nof the open\n\nworkspaces\n\
409
+ \nand\n\nresults workspaces\n\n.\n\nYou should enter the text for which you wish\
410
+ \ to search in the\n\nFind what\n\nedit field.\n\nYou should select the parts\
411
+ \ of the open workspaces and results workspaces within which you\n wish to\
412
+ \ search in the tree under\n\nWithin\n\n.\n\nYou can select multiple items discontinuously\
413
+ \ by holding down the\n\nCtrl\n\nkey while clicking with the mouse.\n\nYou can\
414
+ \ use the\n\nName\n\n,\n\nFormula\n\nand\n\nAll\n fields\n\ncheckboxes to\
415
+ \ specify whether the search should include the\n\nName\n\nproperty, the\n\nFormula\n\
416
+ \nproperty or all properties, respectively. You\n must check at least one of\
417
+ \ these checkboxes so that there are some properties in which to\n search.\n\
418
+ \nYou can also select further search options:\n\n* Match case- check this checkbox\
419
+ \ to perform a case-sensitive search\n* Match whole- check this checkbox to exclude\
420
+ \ matches with parts of words, including\n names of variables and components\n\
421
+ * Ignore spaces- check this checkbox to ignore all white space in the properties\
422
+ \ being\n searched\n* Ignore info fields- check this checkbox to exclude theDescription,Documentation,Last\
423
+ \ modified,Modified by,Path,Protected byandReserved byproperties.\n\nYou should\
424
+ \ press the\n\nFind\n\nbutton to start the search.\n\nAfter searching the lower\
425
+ \ pane will display the number of occurrences of the text that have\n been\
426
+ \ found and provide a tree showing where these are. You can double-click on any\
427
+ \ of the\n results to open that component in the Central Window, with the found\
428
+ \ item selected.\n\nYou can select items in the tree if you wish to replace the\
429
+ \ found text in these items. You\n should then type the text to replace the\
430
+ \ found text in the\n\nReplace with\n\nedit field and click the\n\nReplace\n\n\
431
+ button.\n\nThe read-only icon\n\nnext to a tree\n item indicates that it has\
432
+ \ been\n\nprotected\n\nand so none of its\n text can be replaced using this\
433
+ \ feature.\n\nYou can drag or copy tree items from the Find/Replace Panel into\
434
+ \ the\n\nCentral Window\n\n."
435
+ pipeline_tag: sentence-similarity
436
+ library_name: sentence-transformers
437
+ ---
438
+
439
+ # SentenceTransformer based on BAAI/bge-large-en-v1.5
440
+
441
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
442
+
443
+ ## Model Details
444
+
445
+ ### Model Description
446
+ - **Model Type:** Sentence Transformer
447
+ - **Base model:** [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) <!-- at revision d4aa6901d3a41ba39fb536a557fa166f842b0e09 -->
448
+ - **Maximum Sequence Length:** 384 tokens
449
+ - **Output Dimensionality:** 1024 dimensions
450
+ - **Similarity Function:** Cosine Similarity
451
+ - **Training Dataset:**
452
+ - json
453
+ <!-- - **Language:** Unknown -->
454
+ <!-- - **License:** Unknown -->
455
+
456
+ ### Model Sources
457
+
458
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
459
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
460
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
461
+
462
+ ### Full Model Architecture
463
+
464
+ ```
465
+ SentenceTransformer(
466
+ (0): Transformer({'max_seq_length': 384, 'do_lower_case': True, 'architecture': 'BertModel'})
467
+ (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
468
+ (2): Normalize()
469
+ )
470
+ ```
471
+
472
+ ## Usage
473
+
474
+ ### Direct Usage (Sentence Transformers)
475
+
476
+ First install the Sentence Transformers library:
477
+
478
+ ```bash
479
+ pip install -U sentence-transformers
480
+ ```
481
+
482
+ Then you can load this model and run inference.
483
+ ```python
484
+ from sentence_transformers import SentenceTransformer
485
+
486
+ # Download from the 🤗 Hub
487
+ model = SentenceTransformer("sentence_transformers_model_id")
488
+ # Run inference
489
+ sentences = [
490
+ 'Is there a specific location where I can find workspace filters?',
491
+ '## Windows\n\nYou can access the filters of a workspace in the grid of filters.\n\nThe filter window has most properties of the filter.',
492
+ 'Find/Replace Panel\n\nSee\n\nchoosers and panels\n\nfor information on\n displaying the Find/Replace Panel.\n\nThe Find/Replace Panel allows you to search for specific text in the\n\nproperties\n\nof the\n\ncomponents\n\nof the open\n\nworkspaces\n\nand\n\nresults workspaces\n\n.\n\nYou should enter the text for which you wish to search in the\n\nFind what\n\nedit field.\n\nYou should select the parts of the open workspaces and results workspaces within which you\n wish to search in the tree under\n\nWithin\n\n.\n\nYou can select multiple items discontinuously by holding down the\n\nCtrl\n\nkey while clicking with the mouse.\n\nYou can use the\n\nName\n\n,\n\nFormula\n\nand\n\nAll\n fields\n\ncheckboxes to specify whether the search should include the\n\nName\n\nproperty, the\n\nFormula\n\nproperty or all properties, respectively. You\n must check at least one of these checkboxes so that there are some properties in which to\n search.\n\nYou can also select further search options:\n\n* Match case- check this checkbox to perform a case-sensitive search\n* Match whole- check this checkbox to exclude matches with parts of words, including\n names of variables and components\n* Ignore spaces- check this checkbox to ignore all white space in the properties being\n searched\n* Ignore info fields- check this checkbox to exclude theDescription,Documentation,Last modified,Modified by,Path,Protected byandReserved byproperties.\n\nYou should press the\n\nFind\n\nbutton to start the search.\n\nAfter searching the lower pane will display the number of occurrences of the text that have\n been found and provide a tree showing where these are. You can double-click on any of the\n results to open that component in the Central Window, with the found item selected.\n\nYou can select items in the tree if you wish to replace the found text in these items. You\n should then type the text to replace the found text in the\n\nReplace with\n\nedit field and click the\n\nReplace\n\nbutton.\n\nThe read-only icon\n\nnext to a tree\n item indicates that it has been\n\nprotected\n\nand so none of its\n text can be replaced using this feature.\n\nYou can drag or copy tree items from the Find/Replace Panel into the\n\nCentral Window\n\n.',
493
+ ]
494
+ embeddings = model.encode(sentences)
495
+ print(embeddings.shape)
496
+ # [3, 1024]
497
+
498
+ # Get the similarity scores for the embeddings
499
+ similarities = model.similarity(embeddings, embeddings)
500
+ print(similarities)
501
+ # tensor([[ 1.0000, -0.9967, -0.9964],
502
+ # [-0.9967, 1.0000, 0.9994],
503
+ # [-0.9964, 0.9994, 1.0000]])
504
+ ```
505
+
506
+ <!--
507
+ ### Direct Usage (Transformers)
508
+
509
+ <details><summary>Click to see the direct usage in Transformers</summary>
510
+
511
+ </details>
512
+ -->
513
+
514
+ <!--
515
+ ### Downstream Usage (Sentence Transformers)
516
+
517
+ You can finetune this model on your own dataset.
518
+
519
+ <details><summary>Click to expand</summary>
520
+
521
+ </details>
522
+ -->
523
+
524
+ <!--
525
+ ### Out-of-Scope Use
526
+
527
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
528
+ -->
529
+
530
+ <!--
531
+ ## Bias, Risks and Limitations
532
+
533
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
534
+ -->
535
+
536
+ <!--
537
+ ### Recommendations
538
+
539
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
540
+ -->
541
+
542
+ ## Training Details
543
+
544
+ ### Training Dataset
545
+
546
+ #### json
547
+
548
+ * Dataset: json
549
+ * Size: 16,909 training samples
550
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
551
+ * Approximate statistics based on the first 1000 samples:
552
+ | | anchor | positive | negative |
553
+ |:--------|:----------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------|
554
+ | type | string | string | string |
555
+ | details | <ul><li>min: 7 tokens</li><li>mean: 18.63 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 188.63 tokens</li><li>max: 384 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 150.13 tokens</li><li>max: 384 tokens</li></ul> |
556
+ * Samples:
557
+ | anchor | positive | negative |
558
+ |:--------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
559
+ | <code>What is the purpose of the Analyzer tab in a results workspace?</code> | <code>Analyzer<br><br>The<br><br>Analyzer<br><br>tab of a results workspace shows how the variables in the results workspace depend on each other.<br>If the results workspace contains sample output, the Analyzer shows these calculated results.</code> | <code>Analyzer<br><br>The Analyzer tool for a component shows how variables in the component depend on each other.<br><br>Most components that contain variables with formulas have an<br><br>Analyzer<br><br>tab at the bottom of their component window.<br>The<br><br>Analyzer<br><br>tab gives access to the Analyzer tool.<br>Components with an<br><br>Analyzer<br><br>tab include<br><br>assumption sets<br><br>,<br><br>data views<br><br>,<br><br>database views<br><br>,<br><br>initialization modules<br><br>,<br><br>layer modules<br><br>,<br><br>modules<br><br>,<br><br>MtF views<br><br>,<br><br>programs<br><br>,<br><br>projection processes<br><br>,<br><br>stochastic processes<br><br>,<br>and<br><br>results workspaces<br><br>.<br>The<br><br>Analyzer<br><br>tab of a results workspace<br><br>differs from the<br><br>Analyzer<br><br>tab of the other components and is covered separately.</code> |
560
+ | <code>What kind of output is displayed in the Analyzer if available?</code> | <code>Analyzer<br><br>The<br><br>Analyzer<br><br>tab of a results workspace shows how the variables in the results workspace depend on each other.<br>If the results workspace contains sample output, the Analyzer shows these calculated results.</code> | <code>Accessing output<br><br>You can view and use the output from<br><br>R³S Modeler<br><br>in a variety of different ways.</code> |
561
+ | <code>Where can I find the dependency relationships between variables in my results?</code> | <code>Analyzer<br><br>The<br><br>Analyzer<br><br>tab of a results workspace shows how the variables in the results workspace depend on each other.<br>If the results workspace contains sample output, the Analyzer shows these calculated results.</code> | <code>Analyzer dependency diagram<br><br>The dependency diagram of the<br><br>Analyzer<br><br>tab of a results workspace shows which variable you are currently analyzing with the variables that it depends on and the variables that depend upon it.<br>You can double-click another variable in the dependency diagram to analyze that variable.<br>The dependency diagram shows the value of each variable if this is available in sample output.<br><br>The dependency diagram is divided into three strips of variables:<br><br>* The top strip shows variables whose value depends on the value of the current variable (its dependants).<br>* The middle strip contains the variable currently being analyzed.<br>* The bottom strip shows variables on which the value of the current variable depends (its precedents).<br><br>Each variable has a box that shows:<br><br>* An icon representing the data type of the variable<br>* A name bar that shows the name of the variable<br>* A value box that shows the value of the variable<br><br>The variable boxes are linked by arrows that show the ...</code> |
562
+ * Loss: [<code>TripletLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#tripletloss) with these parameters:
563
+ ```json
564
+ {
565
+ "distance_metric": "TripletDistanceMetric.EUCLIDEAN",
566
+ "triplet_margin": 5
567
+ }
568
+ ```
569
+
570
+ ### Training Hyperparameters
571
+ #### Non-Default Hyperparameters
572
+
573
+ - `per_device_train_batch_size`: 16
574
+ - `gradient_accumulation_steps`: 2
575
+ - `learning_rate`: 2e-05
576
+ - `num_train_epochs`: 2
577
+ - `warmup_ratio`: 0.05
578
+ - `bf16`: True
579
+ - `dataloader_num_workers`: 2
580
+ - `remove_unused_columns`: False
581
+
582
+ #### All Hyperparameters
583
+ <details><summary>Click to expand</summary>
584
+
585
+ - `overwrite_output_dir`: False
586
+ - `do_predict`: False
587
+ - `eval_strategy`: no
588
+ - `prediction_loss_only`: True
589
+ - `per_device_train_batch_size`: 16
590
+ - `per_device_eval_batch_size`: 8
591
+ - `per_gpu_train_batch_size`: None
592
+ - `per_gpu_eval_batch_size`: None
593
+ - `gradient_accumulation_steps`: 2
594
+ - `eval_accumulation_steps`: None
595
+ - `torch_empty_cache_steps`: None
596
+ - `learning_rate`: 2e-05
597
+ - `weight_decay`: 0.0
598
+ - `adam_beta1`: 0.9
599
+ - `adam_beta2`: 0.999
600
+ - `adam_epsilon`: 1e-08
601
+ - `max_grad_norm`: 1.0
602
+ - `num_train_epochs`: 2
603
+ - `max_steps`: -1
604
+ - `lr_scheduler_type`: linear
605
+ - `lr_scheduler_kwargs`: {}
606
+ - `warmup_ratio`: 0.05
607
+ - `warmup_steps`: 0
608
+ - `log_level`: passive
609
+ - `log_level_replica`: warning
610
+ - `log_on_each_node`: True
611
+ - `logging_nan_inf_filter`: True
612
+ - `save_safetensors`: True
613
+ - `save_on_each_node`: False
614
+ - `save_only_model`: False
615
+ - `restore_callback_states_from_checkpoint`: False
616
+ - `no_cuda`: False
617
+ - `use_cpu`: False
618
+ - `use_mps_device`: False
619
+ - `seed`: 42
620
+ - `data_seed`: None
621
+ - `jit_mode_eval`: False
622
+ - `use_ipex`: False
623
+ - `bf16`: True
624
+ - `fp16`: False
625
+ - `fp16_opt_level`: O1
626
+ - `half_precision_backend`: auto
627
+ - `bf16_full_eval`: False
628
+ - `fp16_full_eval`: False
629
+ - `tf32`: None
630
+ - `local_rank`: 0
631
+ - `ddp_backend`: None
632
+ - `tpu_num_cores`: None
633
+ - `tpu_metrics_debug`: False
634
+ - `debug`: []
635
+ - `dataloader_drop_last`: False
636
+ - `dataloader_num_workers`: 2
637
+ - `dataloader_prefetch_factor`: None
638
+ - `past_index`: -1
639
+ - `disable_tqdm`: False
640
+ - `remove_unused_columns`: False
641
+ - `label_names`: None
642
+ - `load_best_model_at_end`: False
643
+ - `ignore_data_skip`: False
644
+ - `fsdp`: []
645
+ - `fsdp_min_num_params`: 0
646
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
647
+ - `fsdp_transformer_layer_cls_to_wrap`: None
648
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
649
+ - `deepspeed`: None
650
+ - `label_smoothing_factor`: 0.0
651
+ - `optim`: adamw_torch
652
+ - `optim_args`: None
653
+ - `adafactor`: False
654
+ - `group_by_length`: False
655
+ - `length_column_name`: length
656
+ - `ddp_find_unused_parameters`: None
657
+ - `ddp_bucket_cap_mb`: None
658
+ - `ddp_broadcast_buffers`: False
659
+ - `dataloader_pin_memory`: True
660
+ - `dataloader_persistent_workers`: False
661
+ - `skip_memory_metrics`: True
662
+ - `use_legacy_prediction_loop`: False
663
+ - `push_to_hub`: False
664
+ - `resume_from_checkpoint`: None
665
+ - `hub_model_id`: None
666
+ - `hub_strategy`: every_save
667
+ - `hub_private_repo`: None
668
+ - `hub_always_push`: False
669
+ - `gradient_checkpointing`: False
670
+ - `gradient_checkpointing_kwargs`: None
671
+ - `include_inputs_for_metrics`: False
672
+ - `include_for_metrics`: []
673
+ - `eval_do_concat_batches`: True
674
+ - `fp16_backend`: auto
675
+ - `push_to_hub_model_id`: None
676
+ - `push_to_hub_organization`: None
677
+ - `mp_parameters`:
678
+ - `auto_find_batch_size`: False
679
+ - `full_determinism`: False
680
+ - `torchdynamo`: None
681
+ - `ray_scope`: last
682
+ - `ddp_timeout`: 1800
683
+ - `torch_compile`: False
684
+ - `torch_compile_backend`: None
685
+ - `torch_compile_mode`: None
686
+ - `dispatch_batches`: None
687
+ - `split_batches`: None
688
+ - `include_tokens_per_second`: False
689
+ - `include_num_input_tokens_seen`: False
690
+ - `neftune_noise_alpha`: None
691
+ - `optim_target_modules`: None
692
+ - `batch_eval_metrics`: False
693
+ - `eval_on_start`: False
694
+ - `use_liger_kernel`: False
695
+ - `eval_use_gather_object`: False
696
+ - `average_tokens_across_devices`: False
697
+ - `prompts`: None
698
+ - `batch_sampler`: batch_sampler
699
+ - `multi_dataset_batch_sampler`: proportional
700
+ - `router_mapping`: {}
701
+ - `learning_rate_mapping`: {}
702
+
703
+ </details>
704
+
705
+ ### Training Logs
706
+ | Epoch | Step | Training Loss |
707
+ |:------:|:----:|:-------------:|
708
+ | 0.0946 | 50 | 9.7648 |
709
+ | 0.1892 | 100 | 9.3037 |
710
+ | 0.2838 | 150 | 9.1803 |
711
+ | 0.3784 | 200 | 9.2374 |
712
+ | 0.4730 | 250 | 9.1815 |
713
+ | 0.5676 | 300 | 9.2019 |
714
+ | 0.6623 | 350 | 9.2085 |
715
+ | 0.7569 | 400 | 9.0603 |
716
+ | 0.8515 | 450 | 9.1276 |
717
+ | 0.9461 | 500 | 9.1794 |
718
+ | 1.0397 | 550 | 9.0348 |
719
+ | 1.1343 | 600 | 9.1246 |
720
+ | 1.2289 | 650 | 9.1251 |
721
+ | 1.3236 | 700 | 9.1681 |
722
+ | 1.4182 | 750 | 8.907 |
723
+ | 1.5128 | 800 | 9.0067 |
724
+ | 1.6074 | 850 | 9.1056 |
725
+ | 1.7020 | 900 | 9.0715 |
726
+ | 1.7966 | 950 | 8.9425 |
727
+ | 1.8912 | 1000 | 9.0148 |
728
+ | 1.9858 | 1050 | 9.0477 |
729
+
730
+
731
+ ### Framework Versions
732
+ - Python: 3.11.11
733
+ - Sentence Transformers: 5.1.1
734
+ - Transformers: 4.49.0
735
+ - PyTorch: 2.5.1+cu124
736
+ - Accelerate: 1.10.1
737
+ - Datasets: 4.1.1
738
+ - Tokenizers: 0.21.0
739
+
740
+ ## Citation
741
+
742
+ ### BibTeX
743
+
744
+ #### Sentence Transformers
745
+ ```bibtex
746
+ @inproceedings{reimers-2019-sentence-bert,
747
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
748
+ author = "Reimers, Nils and Gurevych, Iryna",
749
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
750
+ month = "11",
751
+ year = "2019",
752
+ publisher = "Association for Computational Linguistics",
753
+ url = "https://arxiv.org/abs/1908.10084",
754
+ }
755
+ ```
756
+
757
+ #### TripletLoss
758
+ ```bibtex
759
+ @misc{hermans2017defense,
760
+ title={In Defense of the Triplet Loss for Person Re-Identification},
761
+ author={Alexander Hermans and Lucas Beyer and Bastian Leibe},
762
+ year={2017},
763
+ eprint={1703.07737},
764
+ archivePrefix={arXiv},
765
+ primaryClass={cs.CV}
766
+ }
767
+ ```
768
+
769
+ <!--
770
+ ## Glossary
771
+
772
+ *Clearly define terms in order to be accessible across audiences.*
773
+ -->
774
+
775
+ <!--
776
+ ## Model Card Authors
777
+
778
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
779
+ -->
780
+
781
+ <!--
782
+ ## Model Card Contact
783
+
784
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
785
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-large-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 1024,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 4096,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 16,
24
+ "num_hidden_layers": 24,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.49.0",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "5.1.1",
4
+ "transformers": "4.49.0",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "model_type": "SentenceTransformer",
8
+ "prompts": {
9
+ "query": "",
10
+ "document": ""
11
+ },
12
+ "default_prompt_name": null,
13
+ "similarity_fn_name": "cosine"
14
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a66b161f3952fa42bedb0340befa9c77fc545482a110ceeb0269e1ae1c7786c1
3
+ size 1340612432
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 384,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff