Add new SentenceTransformer model.
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +10 -0
- README.md +995 -0
- config.json +28 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +15 -0
- tokenizer.json +3 -0
- tokenizer_config.json +54 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 1024,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,995 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: FacebookAI/xlm-roberta-large
|
| 3 |
+
datasets:
|
| 4 |
+
- sentence-transformers/stsb
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
library_name: sentence-transformers
|
| 8 |
+
metrics:
|
| 9 |
+
- pearson_cosine
|
| 10 |
+
- spearman_cosine
|
| 11 |
+
- pearson_manhattan
|
| 12 |
+
- spearman_manhattan
|
| 13 |
+
- pearson_euclidean
|
| 14 |
+
- spearman_euclidean
|
| 15 |
+
- pearson_dot
|
| 16 |
+
- spearman_dot
|
| 17 |
+
- pearson_max
|
| 18 |
+
- spearman_max
|
| 19 |
+
pipeline_tag: sentence-similarity
|
| 20 |
+
tags:
|
| 21 |
+
- sentence-transformers
|
| 22 |
+
- sentence-similarity
|
| 23 |
+
- feature-extraction
|
| 24 |
+
- generated_from_trainer
|
| 25 |
+
- dataset_size:5749
|
| 26 |
+
- loss:MatryoshkaLoss
|
| 27 |
+
- loss:CoSENTLoss
|
| 28 |
+
widget:
|
| 29 |
+
- source_sentence: A chef is preparing some food.
|
| 30 |
+
sentences:
|
| 31 |
+
- Five birds stand on the snow.
|
| 32 |
+
- A chef prepared a meal.
|
| 33 |
+
- There is no 'still' that is not relative to some other object.
|
| 34 |
+
- source_sentence: A woman is adding oil on fishes.
|
| 35 |
+
sentences:
|
| 36 |
+
- Large cruise ship floating on the water.
|
| 37 |
+
- It refers to the maximum f-stop (which is defined as the ratio of focal length
|
| 38 |
+
to effective aperture diameter).
|
| 39 |
+
- The woman is cutting potatoes.
|
| 40 |
+
- source_sentence: The player shoots the winning points.
|
| 41 |
+
sentences:
|
| 42 |
+
- Minimum wage laws hurt the least skilled, least productive the most.
|
| 43 |
+
- The basketball player is about to score points for his team.
|
| 44 |
+
- Three televisions, on on the floor, the other two on a box.
|
| 45 |
+
- source_sentence: Stars form in star-formation regions, which itself develop from
|
| 46 |
+
molecular clouds.
|
| 47 |
+
sentences:
|
| 48 |
+
- Although I believe Searle is mistaken, I don't think you have found the problem.
|
| 49 |
+
- It may be possible for a solar system like ours to exist outside of a galaxy.
|
| 50 |
+
- A blond-haired child performing on the trumpet in front of a house while his younger
|
| 51 |
+
brother watches.
|
| 52 |
+
- source_sentence: While Queen may refer to both Queen regent (sovereign) or Queen
|
| 53 |
+
consort, the King has always been the sovereign.
|
| 54 |
+
sentences:
|
| 55 |
+
- At first, I thought this is a bit of a tricky question.
|
| 56 |
+
- A man plays the guitar.
|
| 57 |
+
- There is a very good reason not to refer to the Queen's spouse as "King" - because
|
| 58 |
+
they aren't the King.
|
| 59 |
+
model-index:
|
| 60 |
+
- name: SentenceTransformer based on FacebookAI/xlm-roberta-large
|
| 61 |
+
results:
|
| 62 |
+
- task:
|
| 63 |
+
type: semantic-similarity
|
| 64 |
+
name: Semantic Similarity
|
| 65 |
+
dataset:
|
| 66 |
+
name: sts dev 768
|
| 67 |
+
type: sts-dev-768
|
| 68 |
+
metrics:
|
| 69 |
+
- type: pearson_cosine
|
| 70 |
+
value: .nan
|
| 71 |
+
name: Pearson Cosine
|
| 72 |
+
- type: spearman_cosine
|
| 73 |
+
value: .nan
|
| 74 |
+
name: Spearman Cosine
|
| 75 |
+
- type: pearson_manhattan
|
| 76 |
+
value: -0.038123417655342585
|
| 77 |
+
name: Pearson Manhattan
|
| 78 |
+
- type: spearman_manhattan
|
| 79 |
+
value: -0.030855987437062582
|
| 80 |
+
name: Spearman Manhattan
|
| 81 |
+
- type: pearson_euclidean
|
| 82 |
+
value: -0.0742298464837288
|
| 83 |
+
name: Pearson Euclidean
|
| 84 |
+
- type: spearman_euclidean
|
| 85 |
+
value: -0.016119009479880368
|
| 86 |
+
name: Spearman Euclidean
|
| 87 |
+
- type: pearson_dot
|
| 88 |
+
value: -0.053239384921975864
|
| 89 |
+
name: Pearson Dot
|
| 90 |
+
- type: spearman_dot
|
| 91 |
+
value: -0.03860610142560432
|
| 92 |
+
name: Spearman Dot
|
| 93 |
+
- type: pearson_max
|
| 94 |
+
value: .nan
|
| 95 |
+
name: Pearson Max
|
| 96 |
+
- type: spearman_max
|
| 97 |
+
value: .nan
|
| 98 |
+
name: Spearman Max
|
| 99 |
+
- task:
|
| 100 |
+
type: semantic-similarity
|
| 101 |
+
name: Semantic Similarity
|
| 102 |
+
dataset:
|
| 103 |
+
name: sts dev 512
|
| 104 |
+
type: sts-dev-512
|
| 105 |
+
metrics:
|
| 106 |
+
- type: pearson_cosine
|
| 107 |
+
value: .nan
|
| 108 |
+
name: Pearson Cosine
|
| 109 |
+
- type: spearman_cosine
|
| 110 |
+
value: .nan
|
| 111 |
+
name: Spearman Cosine
|
| 112 |
+
- type: pearson_manhattan
|
| 113 |
+
value: -0.040766255073950965
|
| 114 |
+
name: Pearson Manhattan
|
| 115 |
+
- type: spearman_manhattan
|
| 116 |
+
value: -0.028106086435826655
|
| 117 |
+
name: Spearman Manhattan
|
| 118 |
+
- type: pearson_euclidean
|
| 119 |
+
value: -0.076050553000047
|
| 120 |
+
name: Pearson Euclidean
|
| 121 |
+
- type: spearman_euclidean
|
| 122 |
+
value: -0.014573222092867504
|
| 123 |
+
name: Spearman Euclidean
|
| 124 |
+
- type: pearson_dot
|
| 125 |
+
value: -0.06110575151055097
|
| 126 |
+
name: Pearson Dot
|
| 127 |
+
- type: spearman_dot
|
| 128 |
+
value: -0.04818501881621991
|
| 129 |
+
name: Spearman Dot
|
| 130 |
+
- type: pearson_max
|
| 131 |
+
value: .nan
|
| 132 |
+
name: Pearson Max
|
| 133 |
+
- type: spearman_max
|
| 134 |
+
value: .nan
|
| 135 |
+
name: Spearman Max
|
| 136 |
+
- task:
|
| 137 |
+
type: semantic-similarity
|
| 138 |
+
name: Semantic Similarity
|
| 139 |
+
dataset:
|
| 140 |
+
name: sts dev 256
|
| 141 |
+
type: sts-dev-256
|
| 142 |
+
metrics:
|
| 143 |
+
- type: pearson_cosine
|
| 144 |
+
value: .nan
|
| 145 |
+
name: Pearson Cosine
|
| 146 |
+
- type: spearman_cosine
|
| 147 |
+
value: .nan
|
| 148 |
+
name: Spearman Cosine
|
| 149 |
+
- type: pearson_manhattan
|
| 150 |
+
value: -0.044210895435818166
|
| 151 |
+
name: Pearson Manhattan
|
| 152 |
+
- type: spearman_manhattan
|
| 153 |
+
value: -0.03253407490039325
|
| 154 |
+
name: Spearman Manhattan
|
| 155 |
+
- type: pearson_euclidean
|
| 156 |
+
value: -0.0529355152933442
|
| 157 |
+
name: Pearson Euclidean
|
| 158 |
+
- type: spearman_euclidean
|
| 159 |
+
value: -0.0338167301189937
|
| 160 |
+
name: Spearman Euclidean
|
| 161 |
+
- type: pearson_dot
|
| 162 |
+
value: 0.0887169006335579
|
| 163 |
+
name: Pearson Dot
|
| 164 |
+
- type: spearman_dot
|
| 165 |
+
value: 0.06886250477710897
|
| 166 |
+
name: Spearman Dot
|
| 167 |
+
- type: pearson_max
|
| 168 |
+
value: .nan
|
| 169 |
+
name: Pearson Max
|
| 170 |
+
- type: spearman_max
|
| 171 |
+
value: .nan
|
| 172 |
+
name: Spearman Max
|
| 173 |
+
- task:
|
| 174 |
+
type: semantic-similarity
|
| 175 |
+
name: Semantic Similarity
|
| 176 |
+
dataset:
|
| 177 |
+
name: sts dev 128
|
| 178 |
+
type: sts-dev-128
|
| 179 |
+
metrics:
|
| 180 |
+
- type: pearson_cosine
|
| 181 |
+
value: .nan
|
| 182 |
+
name: Pearson Cosine
|
| 183 |
+
- type: spearman_cosine
|
| 184 |
+
value: .nan
|
| 185 |
+
name: Spearman Cosine
|
| 186 |
+
- type: pearson_manhattan
|
| 187 |
+
value: -0.05321620243744594
|
| 188 |
+
name: Pearson Manhattan
|
| 189 |
+
- type: spearman_manhattan
|
| 190 |
+
value: -0.026531903856252148
|
| 191 |
+
name: Spearman Manhattan
|
| 192 |
+
- type: pearson_euclidean
|
| 193 |
+
value: -0.06064347235216407
|
| 194 |
+
name: Pearson Euclidean
|
| 195 |
+
- type: spearman_euclidean
|
| 196 |
+
value: -0.0270947004666721
|
| 197 |
+
name: Spearman Euclidean
|
| 198 |
+
- type: pearson_dot
|
| 199 |
+
value: 0.07199088437564892
|
| 200 |
+
name: Pearson Dot
|
| 201 |
+
- type: spearman_dot
|
| 202 |
+
value: 0.05552894816506978
|
| 203 |
+
name: Spearman Dot
|
| 204 |
+
- type: pearson_max
|
| 205 |
+
value: .nan
|
| 206 |
+
name: Pearson Max
|
| 207 |
+
- type: spearman_max
|
| 208 |
+
value: .nan
|
| 209 |
+
name: Spearman Max
|
| 210 |
+
- task:
|
| 211 |
+
type: semantic-similarity
|
| 212 |
+
name: Semantic Similarity
|
| 213 |
+
dataset:
|
| 214 |
+
name: sts dev 64
|
| 215 |
+
type: sts-dev-64
|
| 216 |
+
metrics:
|
| 217 |
+
- type: pearson_cosine
|
| 218 |
+
value: .nan
|
| 219 |
+
name: Pearson Cosine
|
| 220 |
+
- type: spearman_cosine
|
| 221 |
+
value: .nan
|
| 222 |
+
name: Spearman Cosine
|
| 223 |
+
- type: pearson_manhattan
|
| 224 |
+
value: -0.046922199302745354
|
| 225 |
+
name: Pearson Manhattan
|
| 226 |
+
- type: spearman_manhattan
|
| 227 |
+
value: -0.027530540631984835
|
| 228 |
+
name: Spearman Manhattan
|
| 229 |
+
- type: pearson_euclidean
|
| 230 |
+
value: -0.04930495975336398
|
| 231 |
+
name: Pearson Euclidean
|
| 232 |
+
- type: spearman_euclidean
|
| 233 |
+
value: -0.02287953412697089
|
| 234 |
+
name: Spearman Euclidean
|
| 235 |
+
- type: pearson_dot
|
| 236 |
+
value: 0.05851507366090909
|
| 237 |
+
name: Pearson Dot
|
| 238 |
+
- type: spearman_dot
|
| 239 |
+
value: 0.044913605667507114
|
| 240 |
+
name: Spearman Dot
|
| 241 |
+
- type: pearson_max
|
| 242 |
+
value: .nan
|
| 243 |
+
name: Pearson Max
|
| 244 |
+
- type: spearman_max
|
| 245 |
+
value: .nan
|
| 246 |
+
name: Spearman Max
|
| 247 |
+
- task:
|
| 248 |
+
type: semantic-similarity
|
| 249 |
+
name: Semantic Similarity
|
| 250 |
+
dataset:
|
| 251 |
+
name: sts test 768
|
| 252 |
+
type: sts-test-768
|
| 253 |
+
metrics:
|
| 254 |
+
- type: pearson_cosine
|
| 255 |
+
value: .nan
|
| 256 |
+
name: Pearson Cosine
|
| 257 |
+
- type: spearman_cosine
|
| 258 |
+
value: .nan
|
| 259 |
+
name: Spearman Cosine
|
| 260 |
+
- type: pearson_manhattan
|
| 261 |
+
value: 0.0005203243269627229
|
| 262 |
+
name: Pearson Manhattan
|
| 263 |
+
- type: spearman_manhattan
|
| 264 |
+
value: 0.007914891421418472
|
| 265 |
+
name: Spearman Manhattan
|
| 266 |
+
- type: pearson_euclidean
|
| 267 |
+
value: -0.008479099839233263
|
| 268 |
+
name: Pearson Euclidean
|
| 269 |
+
- type: spearman_euclidean
|
| 270 |
+
value: 0.0002449834909380018
|
| 271 |
+
name: Spearman Euclidean
|
| 272 |
+
- type: pearson_dot
|
| 273 |
+
value: 0.015253799995136243
|
| 274 |
+
name: Pearson Dot
|
| 275 |
+
- type: spearman_dot
|
| 276 |
+
value: -0.002544651953260673
|
| 277 |
+
name: Spearman Dot
|
| 278 |
+
- type: pearson_max
|
| 279 |
+
value: .nan
|
| 280 |
+
name: Pearson Max
|
| 281 |
+
- type: spearman_max
|
| 282 |
+
value: .nan
|
| 283 |
+
name: Spearman Max
|
| 284 |
+
- task:
|
| 285 |
+
type: semantic-similarity
|
| 286 |
+
name: Semantic Similarity
|
| 287 |
+
dataset:
|
| 288 |
+
name: sts test 512
|
| 289 |
+
type: sts-test-512
|
| 290 |
+
metrics:
|
| 291 |
+
- type: pearson_cosine
|
| 292 |
+
value: .nan
|
| 293 |
+
name: Pearson Cosine
|
| 294 |
+
- type: spearman_cosine
|
| 295 |
+
value: .nan
|
| 296 |
+
name: Spearman Cosine
|
| 297 |
+
- type: pearson_manhattan
|
| 298 |
+
value: -0.000985791968546407
|
| 299 |
+
name: Pearson Manhattan
|
| 300 |
+
- type: spearman_manhattan
|
| 301 |
+
value: 0.009210170664121263
|
| 302 |
+
name: Spearman Manhattan
|
| 303 |
+
- type: pearson_euclidean
|
| 304 |
+
value: -0.010968197464829785
|
| 305 |
+
name: Pearson Euclidean
|
| 306 |
+
- type: spearman_euclidean
|
| 307 |
+
value: 0.0006366521814203481
|
| 308 |
+
name: Spearman Euclidean
|
| 309 |
+
- type: pearson_dot
|
| 310 |
+
value: 0.030903954394043587
|
| 311 |
+
name: Pearson Dot
|
| 312 |
+
- type: spearman_dot
|
| 313 |
+
value: 0.0214169911509498
|
| 314 |
+
name: Spearman Dot
|
| 315 |
+
- type: pearson_max
|
| 316 |
+
value: .nan
|
| 317 |
+
name: Pearson Max
|
| 318 |
+
- type: spearman_max
|
| 319 |
+
value: .nan
|
| 320 |
+
name: Spearman Max
|
| 321 |
+
- task:
|
| 322 |
+
type: semantic-similarity
|
| 323 |
+
name: Semantic Similarity
|
| 324 |
+
dataset:
|
| 325 |
+
name: sts test 256
|
| 326 |
+
type: sts-test-256
|
| 327 |
+
metrics:
|
| 328 |
+
- type: pearson_cosine
|
| 329 |
+
value: .nan
|
| 330 |
+
name: Pearson Cosine
|
| 331 |
+
- type: spearman_cosine
|
| 332 |
+
value: .nan
|
| 333 |
+
name: Spearman Cosine
|
| 334 |
+
- type: pearson_manhattan
|
| 335 |
+
value: -0.008347426706014351
|
| 336 |
+
name: Pearson Manhattan
|
| 337 |
+
- type: spearman_manhattan
|
| 338 |
+
value: 0.008133437696668973
|
| 339 |
+
name: Spearman Manhattan
|
| 340 |
+
- type: pearson_euclidean
|
| 341 |
+
value: -0.01284332508912676
|
| 342 |
+
name: Pearson Euclidean
|
| 343 |
+
- type: spearman_euclidean
|
| 344 |
+
value: 0.006207692348050752
|
| 345 |
+
name: Spearman Euclidean
|
| 346 |
+
- type: pearson_dot
|
| 347 |
+
value: -0.10411841010392278
|
| 348 |
+
name: Pearson Dot
|
| 349 |
+
- type: spearman_dot
|
| 350 |
+
value: -0.10441611480429308
|
| 351 |
+
name: Spearman Dot
|
| 352 |
+
- type: pearson_max
|
| 353 |
+
value: .nan
|
| 354 |
+
name: Pearson Max
|
| 355 |
+
- type: spearman_max
|
| 356 |
+
value: .nan
|
| 357 |
+
name: Spearman Max
|
| 358 |
+
- task:
|
| 359 |
+
type: semantic-similarity
|
| 360 |
+
name: Semantic Similarity
|
| 361 |
+
dataset:
|
| 362 |
+
name: sts test 128
|
| 363 |
+
type: sts-test-128
|
| 364 |
+
metrics:
|
| 365 |
+
- type: pearson_cosine
|
| 366 |
+
value: .nan
|
| 367 |
+
name: Pearson Cosine
|
| 368 |
+
- type: spearman_cosine
|
| 369 |
+
value: .nan
|
| 370 |
+
name: Spearman Cosine
|
| 371 |
+
- type: pearson_manhattan
|
| 372 |
+
value: -0.007293947286825709
|
| 373 |
+
name: Pearson Manhattan
|
| 374 |
+
- type: spearman_manhattan
|
| 375 |
+
value: 0.012461130559236479
|
| 376 |
+
name: Spearman Manhattan
|
| 377 |
+
- type: pearson_euclidean
|
| 378 |
+
value: -0.013785631605643068
|
| 379 |
+
name: Pearson Euclidean
|
| 380 |
+
- type: spearman_euclidean
|
| 381 |
+
value: 0.008355374230034162
|
| 382 |
+
name: Spearman Euclidean
|
| 383 |
+
- type: pearson_dot
|
| 384 |
+
value: -0.07790382803601184
|
| 385 |
+
name: Pearson Dot
|
| 386 |
+
- type: spearman_dot
|
| 387 |
+
value: -0.08277939304968172
|
| 388 |
+
name: Spearman Dot
|
| 389 |
+
- type: pearson_max
|
| 390 |
+
value: .nan
|
| 391 |
+
name: Pearson Max
|
| 392 |
+
- type: spearman_max
|
| 393 |
+
value: .nan
|
| 394 |
+
name: Spearman Max
|
| 395 |
+
- task:
|
| 396 |
+
type: semantic-similarity
|
| 397 |
+
name: Semantic Similarity
|
| 398 |
+
dataset:
|
| 399 |
+
name: sts test 64
|
| 400 |
+
type: sts-test-64
|
| 401 |
+
metrics:
|
| 402 |
+
- type: pearson_cosine
|
| 403 |
+
value: .nan
|
| 404 |
+
name: Pearson Cosine
|
| 405 |
+
- type: spearman_cosine
|
| 406 |
+
value: .nan
|
| 407 |
+
name: Spearman Cosine
|
| 408 |
+
- type: pearson_manhattan
|
| 409 |
+
value: -0.012731573411777072
|
| 410 |
+
name: Pearson Manhattan
|
| 411 |
+
- type: spearman_manhattan
|
| 412 |
+
value: 0.003453137865023755
|
| 413 |
+
name: Spearman Manhattan
|
| 414 |
+
- type: pearson_euclidean
|
| 415 |
+
value: -0.013710254571378023
|
| 416 |
+
name: Pearson Euclidean
|
| 417 |
+
- type: spearman_euclidean
|
| 418 |
+
value: 0.0028389826642085166
|
| 419 |
+
name: Spearman Euclidean
|
| 420 |
+
- type: pearson_dot
|
| 421 |
+
value: -0.04900795414419644
|
| 422 |
+
name: Pearson Dot
|
| 423 |
+
- type: spearman_dot
|
| 424 |
+
value: -0.05520642056907742
|
| 425 |
+
name: Spearman Dot
|
| 426 |
+
- type: pearson_max
|
| 427 |
+
value: .nan
|
| 428 |
+
name: Pearson Max
|
| 429 |
+
- type: spearman_max
|
| 430 |
+
value: .nan
|
| 431 |
+
name: Spearman Max
|
| 432 |
+
---
|
| 433 |
+
|
| 434 |
+
# SentenceTransformer based on FacebookAI/xlm-roberta-large
|
| 435 |
+
|
| 436 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 437 |
+
|
| 438 |
+
## Model Details
|
| 439 |
+
|
| 440 |
+
### Model Description
|
| 441 |
+
- **Model Type:** Sentence Transformer
|
| 442 |
+
- **Base model:** [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) <!-- at revision c23d21b0620b635a76227c604d44e43a9f0ee389 -->
|
| 443 |
+
- **Maximum Sequence Length:** 512 tokens
|
| 444 |
+
- **Output Dimensionality:** 1024 tokens
|
| 445 |
+
- **Similarity Function:** Cosine Similarity
|
| 446 |
+
- **Training Dataset:**
|
| 447 |
+
- [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb)
|
| 448 |
+
- **Language:** en
|
| 449 |
+
<!-- - **License:** Unknown -->
|
| 450 |
+
|
| 451 |
+
### Model Sources
|
| 452 |
+
|
| 453 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 454 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 455 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 456 |
+
|
| 457 |
+
### Full Model Architecture
|
| 458 |
+
|
| 459 |
+
```
|
| 460 |
+
SentenceTransformer(
|
| 461 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: XLMRobertaModel
|
| 462 |
+
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 463 |
+
)
|
| 464 |
+
```
|
| 465 |
+
|
| 466 |
+
## Usage
|
| 467 |
+
|
| 468 |
+
### Direct Usage (Sentence Transformers)
|
| 469 |
+
|
| 470 |
+
First install the Sentence Transformers library:
|
| 471 |
+
|
| 472 |
+
```bash
|
| 473 |
+
pip install -U sentence-transformers
|
| 474 |
+
```
|
| 475 |
+
|
| 476 |
+
Then you can load this model and run inference.
|
| 477 |
+
```python
|
| 478 |
+
from sentence_transformers import SentenceTransformer
|
| 479 |
+
|
| 480 |
+
# Download from the 🤗 Hub
|
| 481 |
+
model = SentenceTransformer("dipteshkanojia/xlm-roberta-large-sts-matryoshka")
|
| 482 |
+
# Run inference
|
| 483 |
+
sentences = [
|
| 484 |
+
'While Queen may refer to both Queen regent (sovereign) or Queen consort, the King has always been the sovereign.',
|
| 485 |
+
'There is a very good reason not to refer to the Queen\'s spouse as "King" - because they aren\'t the King.',
|
| 486 |
+
'A man plays the guitar.',
|
| 487 |
+
]
|
| 488 |
+
embeddings = model.encode(sentences)
|
| 489 |
+
print(embeddings.shape)
|
| 490 |
+
# [3, 1024]
|
| 491 |
+
|
| 492 |
+
# Get the similarity scores for the embeddings
|
| 493 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 494 |
+
print(similarities.shape)
|
| 495 |
+
# [3, 3]
|
| 496 |
+
```
|
| 497 |
+
|
| 498 |
+
<!--
|
| 499 |
+
### Direct Usage (Transformers)
|
| 500 |
+
|
| 501 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 502 |
+
|
| 503 |
+
</details>
|
| 504 |
+
-->
|
| 505 |
+
|
| 506 |
+
<!--
|
| 507 |
+
### Downstream Usage (Sentence Transformers)
|
| 508 |
+
|
| 509 |
+
You can finetune this model on your own dataset.
|
| 510 |
+
|
| 511 |
+
<details><summary>Click to expand</summary>
|
| 512 |
+
|
| 513 |
+
</details>
|
| 514 |
+
-->
|
| 515 |
+
|
| 516 |
+
<!--
|
| 517 |
+
### Out-of-Scope Use
|
| 518 |
+
|
| 519 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 520 |
+
-->
|
| 521 |
+
|
| 522 |
+
## Evaluation
|
| 523 |
+
|
| 524 |
+
### Metrics
|
| 525 |
+
|
| 526 |
+
#### Semantic Similarity
|
| 527 |
+
* Dataset: `sts-dev-768`
|
| 528 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 529 |
+
|
| 530 |
+
| Metric | Value |
|
| 531 |
+
|:--------------------|:--------|
|
| 532 |
+
| pearson_cosine | nan |
|
| 533 |
+
| **spearman_cosine** | **nan** |
|
| 534 |
+
| pearson_manhattan | -0.0381 |
|
| 535 |
+
| spearman_manhattan | -0.0309 |
|
| 536 |
+
| pearson_euclidean | -0.0742 |
|
| 537 |
+
| spearman_euclidean | -0.0161 |
|
| 538 |
+
| pearson_dot | -0.0532 |
|
| 539 |
+
| spearman_dot | -0.0386 |
|
| 540 |
+
| pearson_max | nan |
|
| 541 |
+
| spearman_max | nan |
|
| 542 |
+
|
| 543 |
+
#### Semantic Similarity
|
| 544 |
+
* Dataset: `sts-dev-512`
|
| 545 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 546 |
+
|
| 547 |
+
| Metric | Value |
|
| 548 |
+
|:--------------------|:--------|
|
| 549 |
+
| pearson_cosine | nan |
|
| 550 |
+
| **spearman_cosine** | **nan** |
|
| 551 |
+
| pearson_manhattan | -0.0408 |
|
| 552 |
+
| spearman_manhattan | -0.0281 |
|
| 553 |
+
| pearson_euclidean | -0.0761 |
|
| 554 |
+
| spearman_euclidean | -0.0146 |
|
| 555 |
+
| pearson_dot | -0.0611 |
|
| 556 |
+
| spearman_dot | -0.0482 |
|
| 557 |
+
| pearson_max | nan |
|
| 558 |
+
| spearman_max | nan |
|
| 559 |
+
|
| 560 |
+
#### Semantic Similarity
|
| 561 |
+
* Dataset: `sts-dev-256`
|
| 562 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 563 |
+
|
| 564 |
+
| Metric | Value |
|
| 565 |
+
|:--------------------|:--------|
|
| 566 |
+
| pearson_cosine | nan |
|
| 567 |
+
| **spearman_cosine** | **nan** |
|
| 568 |
+
| pearson_manhattan | -0.0442 |
|
| 569 |
+
| spearman_manhattan | -0.0325 |
|
| 570 |
+
| pearson_euclidean | -0.0529 |
|
| 571 |
+
| spearman_euclidean | -0.0338 |
|
| 572 |
+
| pearson_dot | 0.0887 |
|
| 573 |
+
| spearman_dot | 0.0689 |
|
| 574 |
+
| pearson_max | nan |
|
| 575 |
+
| spearman_max | nan |
|
| 576 |
+
|
| 577 |
+
#### Semantic Similarity
|
| 578 |
+
* Dataset: `sts-dev-128`
|
| 579 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 580 |
+
|
| 581 |
+
| Metric | Value |
|
| 582 |
+
|:--------------------|:--------|
|
| 583 |
+
| pearson_cosine | nan |
|
| 584 |
+
| **spearman_cosine** | **nan** |
|
| 585 |
+
| pearson_manhattan | -0.0532 |
|
| 586 |
+
| spearman_manhattan | -0.0265 |
|
| 587 |
+
| pearson_euclidean | -0.0606 |
|
| 588 |
+
| spearman_euclidean | -0.0271 |
|
| 589 |
+
| pearson_dot | 0.072 |
|
| 590 |
+
| spearman_dot | 0.0555 |
|
| 591 |
+
| pearson_max | nan |
|
| 592 |
+
| spearman_max | nan |
|
| 593 |
+
|
| 594 |
+
#### Semantic Similarity
|
| 595 |
+
* Dataset: `sts-dev-64`
|
| 596 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 597 |
+
|
| 598 |
+
| Metric | Value |
|
| 599 |
+
|:--------------------|:--------|
|
| 600 |
+
| pearson_cosine | nan |
|
| 601 |
+
| **spearman_cosine** | **nan** |
|
| 602 |
+
| pearson_manhattan | -0.0469 |
|
| 603 |
+
| spearman_manhattan | -0.0275 |
|
| 604 |
+
| pearson_euclidean | -0.0493 |
|
| 605 |
+
| spearman_euclidean | -0.0229 |
|
| 606 |
+
| pearson_dot | 0.0585 |
|
| 607 |
+
| spearman_dot | 0.0449 |
|
| 608 |
+
| pearson_max | nan |
|
| 609 |
+
| spearman_max | nan |
|
| 610 |
+
|
| 611 |
+
#### Semantic Similarity
|
| 612 |
+
* Dataset: `sts-test-768`
|
| 613 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 614 |
+
|
| 615 |
+
| Metric | Value |
|
| 616 |
+
|:--------------------|:--------|
|
| 617 |
+
| pearson_cosine | nan |
|
| 618 |
+
| **spearman_cosine** | **nan** |
|
| 619 |
+
| pearson_manhattan | 0.0005 |
|
| 620 |
+
| spearman_manhattan | 0.0079 |
|
| 621 |
+
| pearson_euclidean | -0.0085 |
|
| 622 |
+
| spearman_euclidean | 0.0002 |
|
| 623 |
+
| pearson_dot | 0.0153 |
|
| 624 |
+
| spearman_dot | -0.0025 |
|
| 625 |
+
| pearson_max | nan |
|
| 626 |
+
| spearman_max | nan |
|
| 627 |
+
|
| 628 |
+
#### Semantic Similarity
|
| 629 |
+
* Dataset: `sts-test-512`
|
| 630 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 631 |
+
|
| 632 |
+
| Metric | Value |
|
| 633 |
+
|:--------------------|:--------|
|
| 634 |
+
| pearson_cosine | nan |
|
| 635 |
+
| **spearman_cosine** | **nan** |
|
| 636 |
+
| pearson_manhattan | -0.001 |
|
| 637 |
+
| spearman_manhattan | 0.0092 |
|
| 638 |
+
| pearson_euclidean | -0.011 |
|
| 639 |
+
| spearman_euclidean | 0.0006 |
|
| 640 |
+
| pearson_dot | 0.0309 |
|
| 641 |
+
| spearman_dot | 0.0214 |
|
| 642 |
+
| pearson_max | nan |
|
| 643 |
+
| spearman_max | nan |
|
| 644 |
+
|
| 645 |
+
#### Semantic Similarity
|
| 646 |
+
* Dataset: `sts-test-256`
|
| 647 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 648 |
+
|
| 649 |
+
| Metric | Value |
|
| 650 |
+
|:--------------------|:--------|
|
| 651 |
+
| pearson_cosine | nan |
|
| 652 |
+
| **spearman_cosine** | **nan** |
|
| 653 |
+
| pearson_manhattan | -0.0083 |
|
| 654 |
+
| spearman_manhattan | 0.0081 |
|
| 655 |
+
| pearson_euclidean | -0.0128 |
|
| 656 |
+
| spearman_euclidean | 0.0062 |
|
| 657 |
+
| pearson_dot | -0.1041 |
|
| 658 |
+
| spearman_dot | -0.1044 |
|
| 659 |
+
| pearson_max | nan |
|
| 660 |
+
| spearman_max | nan |
|
| 661 |
+
|
| 662 |
+
#### Semantic Similarity
|
| 663 |
+
* Dataset: `sts-test-128`
|
| 664 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 665 |
+
|
| 666 |
+
| Metric | Value |
|
| 667 |
+
|:--------------------|:--------|
|
| 668 |
+
| pearson_cosine | nan |
|
| 669 |
+
| **spearman_cosine** | **nan** |
|
| 670 |
+
| pearson_manhattan | -0.0073 |
|
| 671 |
+
| spearman_manhattan | 0.0125 |
|
| 672 |
+
| pearson_euclidean | -0.0138 |
|
| 673 |
+
| spearman_euclidean | 0.0084 |
|
| 674 |
+
| pearson_dot | -0.0779 |
|
| 675 |
+
| spearman_dot | -0.0828 |
|
| 676 |
+
| pearson_max | nan |
|
| 677 |
+
| spearman_max | nan |
|
| 678 |
+
|
| 679 |
+
#### Semantic Similarity
|
| 680 |
+
* Dataset: `sts-test-64`
|
| 681 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 682 |
+
|
| 683 |
+
| Metric | Value |
|
| 684 |
+
|:--------------------|:--------|
|
| 685 |
+
| pearson_cosine | nan |
|
| 686 |
+
| **spearman_cosine** | **nan** |
|
| 687 |
+
| pearson_manhattan | -0.0127 |
|
| 688 |
+
| spearman_manhattan | 0.0035 |
|
| 689 |
+
| pearson_euclidean | -0.0137 |
|
| 690 |
+
| spearman_euclidean | 0.0028 |
|
| 691 |
+
| pearson_dot | -0.049 |
|
| 692 |
+
| spearman_dot | -0.0552 |
|
| 693 |
+
| pearson_max | nan |
|
| 694 |
+
| spearman_max | nan |
|
| 695 |
+
|
| 696 |
+
<!--
|
| 697 |
+
## Bias, Risks and Limitations
|
| 698 |
+
|
| 699 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 700 |
+
-->
|
| 701 |
+
|
| 702 |
+
<!--
|
| 703 |
+
### Recommendations
|
| 704 |
+
|
| 705 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 706 |
+
-->
|
| 707 |
+
|
| 708 |
+
## Training Details
|
| 709 |
+
|
| 710 |
+
### Training Dataset
|
| 711 |
+
|
| 712 |
+
#### sentence-transformers/stsb
|
| 713 |
+
|
| 714 |
+
* Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
|
| 715 |
+
* Size: 5,749 training samples
|
| 716 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
| 717 |
+
* Approximate statistics based on the first 1000 samples:
|
| 718 |
+
| | sentence1 | sentence2 | score |
|
| 719 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
| 720 |
+
| type | string | string | float |
|
| 721 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 11.08 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 11.05 tokens</li><li>max: 30 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
|
| 722 |
+
* Samples:
|
| 723 |
+
| sentence1 | sentence2 | score |
|
| 724 |
+
|:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------|
|
| 725 |
+
| <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> |
|
| 726 |
+
| <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> |
|
| 727 |
+
| <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> |
|
| 728 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
| 729 |
+
```json
|
| 730 |
+
{
|
| 731 |
+
"loss": "CoSENTLoss",
|
| 732 |
+
"matryoshka_dims": [
|
| 733 |
+
768,
|
| 734 |
+
512,
|
| 735 |
+
256,
|
| 736 |
+
128,
|
| 737 |
+
64
|
| 738 |
+
],
|
| 739 |
+
"matryoshka_weights": [
|
| 740 |
+
1,
|
| 741 |
+
1,
|
| 742 |
+
1,
|
| 743 |
+
1,
|
| 744 |
+
1
|
| 745 |
+
],
|
| 746 |
+
"n_dims_per_step": -1
|
| 747 |
+
}
|
| 748 |
+
```
|
| 749 |
+
|
| 750 |
+
### Evaluation Dataset
|
| 751 |
+
|
| 752 |
+
#### sentence-transformers/stsb
|
| 753 |
+
|
| 754 |
+
* Dataset: [sentence-transformers/stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
|
| 755 |
+
* Size: 1,500 evaluation samples
|
| 756 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
|
| 757 |
+
* Approximate statistics based on the first 1000 samples:
|
| 758 |
+
| | sentence1 | sentence2 | score |
|
| 759 |
+
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
| 760 |
+
| type | string | string | float |
|
| 761 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 16.55 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 16.5 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
|
| 762 |
+
* Samples:
|
| 763 |
+
| sentence1 | sentence2 | score |
|
| 764 |
+
|:--------------------------------------------------|:------------------------------------------------------|:------------------|
|
| 765 |
+
| <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> |
|
| 766 |
+
| <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> |
|
| 767 |
+
| <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> |
|
| 768 |
+
* Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
|
| 769 |
+
```json
|
| 770 |
+
{
|
| 771 |
+
"loss": "CoSENTLoss",
|
| 772 |
+
"matryoshka_dims": [
|
| 773 |
+
768,
|
| 774 |
+
512,
|
| 775 |
+
256,
|
| 776 |
+
128,
|
| 777 |
+
64
|
| 778 |
+
],
|
| 779 |
+
"matryoshka_weights": [
|
| 780 |
+
1,
|
| 781 |
+
1,
|
| 782 |
+
1,
|
| 783 |
+
1,
|
| 784 |
+
1
|
| 785 |
+
],
|
| 786 |
+
"n_dims_per_step": -1
|
| 787 |
+
}
|
| 788 |
+
```
|
| 789 |
+
|
| 790 |
+
### Training Hyperparameters
|
| 791 |
+
#### Non-Default Hyperparameters
|
| 792 |
+
|
| 793 |
+
- `eval_strategy`: steps
|
| 794 |
+
- `per_device_train_batch_size`: 6
|
| 795 |
+
- `per_device_eval_batch_size`: 6
|
| 796 |
+
- `num_train_epochs`: 8
|
| 797 |
+
- `warmup_ratio`: 0.1
|
| 798 |
+
- `fp16`: True
|
| 799 |
+
|
| 800 |
+
#### All Hyperparameters
|
| 801 |
+
<details><summary>Click to expand</summary>
|
| 802 |
+
|
| 803 |
+
- `overwrite_output_dir`: False
|
| 804 |
+
- `do_predict`: False
|
| 805 |
+
- `eval_strategy`: steps
|
| 806 |
+
- `prediction_loss_only`: True
|
| 807 |
+
- `per_device_train_batch_size`: 6
|
| 808 |
+
- `per_device_eval_batch_size`: 6
|
| 809 |
+
- `per_gpu_train_batch_size`: None
|
| 810 |
+
- `per_gpu_eval_batch_size`: None
|
| 811 |
+
- `gradient_accumulation_steps`: 1
|
| 812 |
+
- `eval_accumulation_steps`: None
|
| 813 |
+
- `torch_empty_cache_steps`: None
|
| 814 |
+
- `learning_rate`: 5e-05
|
| 815 |
+
- `weight_decay`: 0.0
|
| 816 |
+
- `adam_beta1`: 0.9
|
| 817 |
+
- `adam_beta2`: 0.999
|
| 818 |
+
- `adam_epsilon`: 1e-08
|
| 819 |
+
- `max_grad_norm`: 1.0
|
| 820 |
+
- `num_train_epochs`: 8
|
| 821 |
+
- `max_steps`: -1
|
| 822 |
+
- `lr_scheduler_type`: linear
|
| 823 |
+
- `lr_scheduler_kwargs`: {}
|
| 824 |
+
- `warmup_ratio`: 0.1
|
| 825 |
+
- `warmup_steps`: 0
|
| 826 |
+
- `log_level`: passive
|
| 827 |
+
- `log_level_replica`: warning
|
| 828 |
+
- `log_on_each_node`: True
|
| 829 |
+
- `logging_nan_inf_filter`: True
|
| 830 |
+
- `save_safetensors`: True
|
| 831 |
+
- `save_on_each_node`: False
|
| 832 |
+
- `save_only_model`: False
|
| 833 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 834 |
+
- `no_cuda`: False
|
| 835 |
+
- `use_cpu`: False
|
| 836 |
+
- `use_mps_device`: False
|
| 837 |
+
- `seed`: 42
|
| 838 |
+
- `data_seed`: None
|
| 839 |
+
- `jit_mode_eval`: False
|
| 840 |
+
- `use_ipex`: False
|
| 841 |
+
- `bf16`: False
|
| 842 |
+
- `fp16`: True
|
| 843 |
+
- `fp16_opt_level`: O1
|
| 844 |
+
- `half_precision_backend`: auto
|
| 845 |
+
- `bf16_full_eval`: False
|
| 846 |
+
- `fp16_full_eval`: False
|
| 847 |
+
- `tf32`: None
|
| 848 |
+
- `local_rank`: 0
|
| 849 |
+
- `ddp_backend`: None
|
| 850 |
+
- `tpu_num_cores`: None
|
| 851 |
+
- `tpu_metrics_debug`: False
|
| 852 |
+
- `debug`: []
|
| 853 |
+
- `dataloader_drop_last`: False
|
| 854 |
+
- `dataloader_num_workers`: 0
|
| 855 |
+
- `dataloader_prefetch_factor`: None
|
| 856 |
+
- `past_index`: -1
|
| 857 |
+
- `disable_tqdm`: False
|
| 858 |
+
- `remove_unused_columns`: True
|
| 859 |
+
- `label_names`: None
|
| 860 |
+
- `load_best_model_at_end`: False
|
| 861 |
+
- `ignore_data_skip`: False
|
| 862 |
+
- `fsdp`: []
|
| 863 |
+
- `fsdp_min_num_params`: 0
|
| 864 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 865 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 866 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 867 |
+
- `deepspeed`: None
|
| 868 |
+
- `label_smoothing_factor`: 0.0
|
| 869 |
+
- `optim`: adamw_torch
|
| 870 |
+
- `optim_args`: None
|
| 871 |
+
- `adafactor`: False
|
| 872 |
+
- `group_by_length`: False
|
| 873 |
+
- `length_column_name`: length
|
| 874 |
+
- `ddp_find_unused_parameters`: None
|
| 875 |
+
- `ddp_bucket_cap_mb`: None
|
| 876 |
+
- `ddp_broadcast_buffers`: False
|
| 877 |
+
- `dataloader_pin_memory`: True
|
| 878 |
+
- `dataloader_persistent_workers`: False
|
| 879 |
+
- `skip_memory_metrics`: True
|
| 880 |
+
- `use_legacy_prediction_loop`: False
|
| 881 |
+
- `push_to_hub`: False
|
| 882 |
+
- `resume_from_checkpoint`: None
|
| 883 |
+
- `hub_model_id`: None
|
| 884 |
+
- `hub_strategy`: every_save
|
| 885 |
+
- `hub_private_repo`: False
|
| 886 |
+
- `hub_always_push`: False
|
| 887 |
+
- `gradient_checkpointing`: False
|
| 888 |
+
- `gradient_checkpointing_kwargs`: None
|
| 889 |
+
- `include_inputs_for_metrics`: False
|
| 890 |
+
- `eval_do_concat_batches`: True
|
| 891 |
+
- `fp16_backend`: auto
|
| 892 |
+
- `push_to_hub_model_id`: None
|
| 893 |
+
- `push_to_hub_organization`: None
|
| 894 |
+
- `mp_parameters`:
|
| 895 |
+
- `auto_find_batch_size`: False
|
| 896 |
+
- `full_determinism`: False
|
| 897 |
+
- `torchdynamo`: None
|
| 898 |
+
- `ray_scope`: last
|
| 899 |
+
- `ddp_timeout`: 1800
|
| 900 |
+
- `torch_compile`: False
|
| 901 |
+
- `torch_compile_backend`: None
|
| 902 |
+
- `torch_compile_mode`: None
|
| 903 |
+
- `dispatch_batches`: None
|
| 904 |
+
- `split_batches`: None
|
| 905 |
+
- `include_tokens_per_second`: False
|
| 906 |
+
- `include_num_input_tokens_seen`: False
|
| 907 |
+
- `neftune_noise_alpha`: None
|
| 908 |
+
- `optim_target_modules`: None
|
| 909 |
+
- `batch_eval_metrics`: False
|
| 910 |
+
- `eval_on_start`: False
|
| 911 |
+
- `eval_use_gather_object`: False
|
| 912 |
+
- `batch_sampler`: batch_sampler
|
| 913 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 914 |
+
|
| 915 |
+
</details>
|
| 916 |
+
|
| 917 |
+
### Training Logs
|
| 918 |
+
| Epoch | Step | Training Loss | loss | sts-dev-128_spearman_cosine | sts-dev-256_spearman_cosine | sts-dev-512_spearman_cosine | sts-dev-64_spearman_cosine | sts-dev-768_spearman_cosine | sts-test-128_spearman_cosine | sts-test-256_spearman_cosine | sts-test-512_spearman_cosine | sts-test-64_spearman_cosine | sts-test-768_spearman_cosine |
|
| 919 |
+
|:------:|:----:|:-------------:|:-------:|:---------------------------:|:---------------------------:|:---------------------------:|:--------------------------:|:---------------------------:|:----------------------------:|:----------------------------:|:----------------------------:|:---------------------------:|:----------------------------:|
|
| 920 |
+
| 1.0417 | 500 | 21.1353 | 20.8565 | nan | nan | nan | nan | nan | - | - | - | - | - |
|
| 921 |
+
| 2.0833 | 1000 | 20.7941 | 20.8565 | nan | nan | nan | nan | nan | - | - | - | - | - |
|
| 922 |
+
| 3.125 | 1500 | 20.7823 | 20.8565 | nan | nan | nan | nan | nan | - | - | - | - | - |
|
| 923 |
+
| 4.1667 | 2000 | 20.781 | 20.8565 | nan | nan | nan | nan | nan | - | - | - | - | - |
|
| 924 |
+
| 5.2083 | 2500 | 20.7707 | 20.8565 | nan | nan | nan | nan | nan | - | - | - | - | - |
|
| 925 |
+
| 6.25 | 3000 | 20.7661 | 20.8565 | nan | nan | nan | nan | nan | - | - | - | - | - |
|
| 926 |
+
| 7.2917 | 3500 | 20.7719 | 20.8565 | nan | nan | nan | nan | nan | - | - | - | - | - |
|
| 927 |
+
| 8.0 | 3840 | - | - | - | - | - | - | - | nan | nan | nan | nan | nan |
|
| 928 |
+
|
| 929 |
+
|
| 930 |
+
### Framework Versions
|
| 931 |
+
- Python: 3.9.19
|
| 932 |
+
- Sentence Transformers: 3.1.0.dev0
|
| 933 |
+
- Transformers: 4.44.2
|
| 934 |
+
- PyTorch: 2.4.1+cu121
|
| 935 |
+
- Accelerate: 0.34.2
|
| 936 |
+
- Datasets: 2.21.0
|
| 937 |
+
- Tokenizers: 0.19.1
|
| 938 |
+
|
| 939 |
+
## Citation
|
| 940 |
+
|
| 941 |
+
### BibTeX
|
| 942 |
+
|
| 943 |
+
#### Sentence Transformers
|
| 944 |
+
```bibtex
|
| 945 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 946 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 947 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 948 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 949 |
+
month = "11",
|
| 950 |
+
year = "2019",
|
| 951 |
+
publisher = "Association for Computational Linguistics",
|
| 952 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 953 |
+
}
|
| 954 |
+
```
|
| 955 |
+
|
| 956 |
+
#### MatryoshkaLoss
|
| 957 |
+
```bibtex
|
| 958 |
+
@misc{kusupati2024matryoshka,
|
| 959 |
+
title={Matryoshka Representation Learning},
|
| 960 |
+
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
|
| 961 |
+
year={2024},
|
| 962 |
+
eprint={2205.13147},
|
| 963 |
+
archivePrefix={arXiv},
|
| 964 |
+
primaryClass={cs.LG}
|
| 965 |
+
}
|
| 966 |
+
```
|
| 967 |
+
|
| 968 |
+
#### CoSENTLoss
|
| 969 |
+
```bibtex
|
| 970 |
+
@online{kexuefm-8847,
|
| 971 |
+
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
|
| 972 |
+
author={Su Jianlin},
|
| 973 |
+
year={2022},
|
| 974 |
+
month={Jan},
|
| 975 |
+
url={https://kexue.fm/archives/8847},
|
| 976 |
+
}
|
| 977 |
+
```
|
| 978 |
+
|
| 979 |
+
<!--
|
| 980 |
+
## Glossary
|
| 981 |
+
|
| 982 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 983 |
+
-->
|
| 984 |
+
|
| 985 |
+
<!--
|
| 986 |
+
## Model Card Authors
|
| 987 |
+
|
| 988 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 989 |
+
-->
|
| 990 |
+
|
| 991 |
+
<!--
|
| 992 |
+
## Model Card Contact
|
| 993 |
+
|
| 994 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 995 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "xlm-roberta-large",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"XLMRobertaModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"bos_token_id": 0,
|
| 8 |
+
"classifier_dropout": null,
|
| 9 |
+
"eos_token_id": 2,
|
| 10 |
+
"hidden_act": "gelu",
|
| 11 |
+
"hidden_dropout_prob": 0.1,
|
| 12 |
+
"hidden_size": 1024,
|
| 13 |
+
"initializer_range": 0.02,
|
| 14 |
+
"intermediate_size": 4096,
|
| 15 |
+
"layer_norm_eps": 1e-05,
|
| 16 |
+
"max_position_embeddings": 514,
|
| 17 |
+
"model_type": "xlm-roberta",
|
| 18 |
+
"num_attention_heads": 16,
|
| 19 |
+
"num_hidden_layers": 24,
|
| 20 |
+
"output_past": true,
|
| 21 |
+
"pad_token_id": 1,
|
| 22 |
+
"position_embedding_type": "absolute",
|
| 23 |
+
"torch_dtype": "float32",
|
| 24 |
+
"transformers_version": "4.44.2",
|
| 25 |
+
"type_vocab_size": 1,
|
| 26 |
+
"use_cache": true,
|
| 27 |
+
"vocab_size": 250002
|
| 28 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "3.1.0.dev0",
|
| 4 |
+
"transformers": "4.44.2",
|
| 5 |
+
"pytorch": "2.4.1+cu121"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": null
|
| 10 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:60f5c9a0442025429e327c478b39b65da049485680fb689cc497ec710002388c
|
| 3 |
+
size 2239607176
|
modules.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
}
|
| 14 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 512,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": "<s>",
|
| 3 |
+
"cls_token": "<s>",
|
| 4 |
+
"eos_token": "</s>",
|
| 5 |
+
"mask_token": {
|
| 6 |
+
"content": "<mask>",
|
| 7 |
+
"lstrip": true,
|
| 8 |
+
"normalized": false,
|
| 9 |
+
"rstrip": false,
|
| 10 |
+
"single_word": false
|
| 11 |
+
},
|
| 12 |
+
"pad_token": "<pad>",
|
| 13 |
+
"sep_token": "</s>",
|
| 14 |
+
"unk_token": "<unk>"
|
| 15 |
+
}
|
tokenizer.json
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:883b037111086fd4dfebbbc9b7cee11e1517b5e0c0514879478661440f137085
|
| 3 |
+
size 17082987
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<s>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<pad>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "</s>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "<unk>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"250001": {
|
| 36 |
+
"content": "<mask>",
|
| 37 |
+
"lstrip": true,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"bos_token": "<s>",
|
| 45 |
+
"clean_up_tokenization_spaces": true,
|
| 46 |
+
"cls_token": "<s>",
|
| 47 |
+
"eos_token": "</s>",
|
| 48 |
+
"mask_token": "<mask>",
|
| 49 |
+
"model_max_length": 512,
|
| 50 |
+
"pad_token": "<pad>",
|
| 51 |
+
"sep_token": "</s>",
|
| 52 |
+
"tokenizer_class": "XLMRobertaTokenizer",
|
| 53 |
+
"unk_token": "<unk>"
|
| 54 |
+
}
|