ebrasha commited on
Commit
bec59b0
·
verified ·
1 Parent(s): 447b211

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ Abdal_XSS_AI_Engine.keras filter=lfs diff=lfs merge=lfs -text
37
+ Abdal_XSS_AI_Engine_TensorFlow/variables/variables.data-00000-of-00001 filter=lfs diff=lfs merge=lfs -text
Abdal_XSS_AI_Engine.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:78893d9542278d1fff7e3ff98a6b8b8085f1666b651bc33b5dd627dd96f0d8b0
3
+ size 16394184
Abdal_XSS_AI_Engine.keras ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52a6c47d9112a1e3dfbd1b01572d9559c25c8feb53acaa4339839163bb412a54
3
+ size 33065249
Abdal_XSS_AI_Engine.onnx ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e4b21d69f18aedbf27dde4fcde95ad356fab2f7bfac2dfafca51bd465dbb6261
3
+ size 11014434
Abdal_XSS_AI_Engine_TensorFlow/fingerprint.pb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4631581042493220a7c199c1dbbe20e30a93792d280c54c586290bcbdc19eb44
3
+ size 56
Abdal_XSS_AI_Engine_TensorFlow/saved_model.pb ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:34e1b7b6b64fd17d0a896a5c9acf1f3db3c290cc6f63876eea2642f30dd422e5
3
+ size 62469
Abdal_XSS_AI_Engine_TensorFlow/variables/variables.data-00000-of-00001 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c1483b41b7fc2e06cd9156b6457c52b5c75b7fa5e6158f42c7687a74d159fc75
3
+ size 22024431
Abdal_XSS_AI_Engine_TensorFlow/variables/variables.index ADDED
Binary file (1.22 kB). View file
 
LICENSE ADDED
@@ -0,0 +1,21 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ MIT License
2
+
3
+ Copyright (c) 2024 Ebrahim Shafiei
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.
README.fa.md ADDED
@@ -0,0 +1,168 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Abdal XSS AI Engine
2
+
3
+ ## 🎤 ترجمه اطلاعات نرم افزار
4
+ - [English](README.md)
5
+ - [فارسی](README.fa.md)
6
+
7
+
8
+ <p align="center"><img src="scr.jpg?raw=true"></p>
9
+
10
+
11
+ ## 💎 هدف اصلی
12
+ مدل هوش مصنوعی Abdal XSS AI Engine با هدف ارائه یک راهکار پیشرفته و رایگان برای مقابله با حملات XSS در ایران توسعه داده شده است. با توجه به نبود ابزارهای مناسب سایبری داخلی، این مدل به عنوان یک نیاز ضروری برای افزایش امنیت در فضای سایبری ایران طراحی شده تا از حملات XSS جلوگیری کند و کاربران ایرانی بتوانند از حفاظت بهتری برخوردار شوند.
13
+
14
+
15
+ ## 🛠️ پیش نیاز برای برنامه نویسان
16
+ - **Python 3.7 یا بالاتر**
17
+ - **Flask** (برای ساخت RESTful API)
18
+ - **TensorFlow** (مدل‌های یادگیری عمیق)
19
+ - **Scikit-learn** (برای پیش‌پردازش داده‌های متنی و بردار سازی TF-IDF)
20
+ - **Pandas** (برای مدیریت داده‌ها در مقیاس بزرگ)
21
+ - **درک عمیق از امنیت وب و حملات XSS**
22
+ - **Git** (کنترل نسخه و مدیریت مخازن)
23
+
24
+
25
+ ### 🔥 پیشنیازها
26
+
27
+ - **Python 3.7 یا بالاتر**
28
+ - **Flask**
29
+ - **TensorFlow**
30
+ - **Scikit-learn**
31
+ - **Pandas**
32
+ - **Pickle**
33
+
34
+
35
+ ## ✨ قابلیت ها
36
+
37
+ - قابلیت پردازش صدها هزار الگوی XSS و شناسایی حملات جدید.
38
+ - استفاده از مدل یادگیری عمیق با چند لایه Dense و Dropout.
39
+ - آموزش مدل با استفاده از مجموعه داده ترکیبی از فایل‌های CSV.
40
+ - استفاده از تکنیک TF-IDF برای استخراج ویژگی‌های متنی از حملات XSS.
41
+ - قابلیت افزایش دقت مدل با داده‌های جدید و به‌روز رسانی مداوم.
42
+ - پشتیبانی از بهینه‌سازی مدل با استفاده از روش Adam و معیار دقت (accuracy).
43
+ - ذخیره مدل نهایی و وکتورایزر برای استفاده در آینده و استقرار در محیط‌های مختلف.
44
+
45
+
46
+ ## 📝️ چگونه کار می کند ؟
47
+
48
+ با استفاده از کد زیر می‌توانید از مدل به صورت یک API برای شناسایی حملات XSS استفاده کنید
49
+
50
+ ```python
51
+ from flask import Flask, request, jsonify
52
+ import tensorflow as tf
53
+ import pickle
54
+ import numpy as np
55
+
56
+ app = Flask(__name__)
57
+
58
+ # Load the model and vectorizer
59
+ model = tf.keras.models.load_model('Abdal_XSS_AI_Engine.h5')
60
+ with open('vectorizer.pkl', 'rb') as f:
61
+ vectorizer = pickle.load(f)
62
+
63
+
64
+ @app.route('/predict', methods=['POST'])
65
+ def predict():
66
+ data = request.json
67
+ sentences = data['sentences']
68
+
69
+ # Preprocess the input data using the vectorizer
70
+ X_new = vectorizer.transform(sentences).toarray()
71
+
72
+ # Make predictions
73
+ predictions = (model.predict(X_new) > 0.5).astype(int)
74
+
75
+ # Prepare and return the response
76
+ response = {
77
+ 'predictions': ['XSS Detected' if pred == 1 else 'No XSS Detected' for pred in predictions.flatten()]
78
+ }
79
+ return jsonify(response)
80
+
81
+
82
+ if __name__ == '__main__':
83
+ app.run(debug=True)
84
+
85
+ ```
86
+ علاوه بر API، می‌توانید از مدل برای خواندن داده‌ها از یک فایل متنی و شناسایی حملات استفاده کنید. کد زیر نمونه‌ای از این استفاده است:
87
+
88
+ ```python
89
+ import os
90
+ import tensorflow as tf
91
+ import pickle
92
+
93
+ # Disable oneDNN custom operations
94
+ os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
95
+ # Set TensorFlow logging level to 'ERROR' to suppress the info and warning messages
96
+ os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
97
+
98
+ # Check if model and vectorizer files exist
99
+ model_path = 'Abdal_XSS_AI_Engine.keras'
100
+ vectorizer_path = 'vectorizer.pkl'
101
+
102
+ if not os.path.exists(model_path):
103
+ raise FileNotFoundError(f"Model file not found: {model_path}")
104
+ if not os.path.exists(vectorizer_path):
105
+ raise FileNotFoundError(f"Vectorizer file not found: {vectorizer_path}")
106
+
107
+ # Load the model from the Keras format
108
+ model_name = "Abdal XSS AI Engine"
109
+ model = tf.keras.models.load_model(model_path)
110
+
111
+ # Load the vectorizer
112
+ with open(vectorizer_path, 'rb') as f:
113
+ vectorizer = pickle.load(f)
114
+
115
+ # Read new data (sentences) from a file (e.g., 'attack-xss-payload.txt')
116
+ input_file = 'attack-xss-payload.txt'
117
+ if not os.path.exists(input_file):
118
+ raise FileNotFoundError(f"Input file not found: {input_file}")
119
+
120
+ with open(input_file, 'r', encoding='utf-8') as file:
121
+ new_sentences = [line.strip() for line in file if line.strip()] # Reading each line from file
122
+
123
+ # Check if any sentence exists for prediction
124
+ if not new_sentences:
125
+ raise ValueError("No data available for prediction.")
126
+
127
+ # Preprocess the new data using the loaded TF-IDF vectorizer
128
+ X_new = vectorizer.transform(new_sentences).toarray()
129
+
130
+ # Predict using the loaded model
131
+ predictions = (model.predict(X_new) > 0.5).astype(int)
132
+
133
+ # Print predictions
134
+ for i, sentence in enumerate(new_sentences):
135
+ print(f"Sentence: {sentence}")
136
+ print(f"Prediction: {'XSS Detected' if predictions[i] == 1 else 'No XSS Detected'}\n")
137
+
138
+ ```
139
+ ### نحوه‌ی بارگذاری مدل برای TensorFlow
140
+
141
+ برای استفاده از این مدل در پروژه‌ی TensorFlow، کافی است کد زیر را اجرا کنید:
142
+
143
+ ```python
144
+ import tensorflow as tf
145
+
146
+ # Load the saved model
147
+ model = tf.keras.models.load_model('Abdal_XSS_AI_Engine')
148
+
149
+ print("✅ Model loaded successfully!")
150
+ ```
151
+
152
+ ## ❤️ کمک به پروژه
153
+
154
+ https://alphajet.ir/abdal-donation
155
+
156
+ ## 🤵 برنامه نویس
157
+ دست ساز با عشق توسط ابراهیم شفیعی (ابراشا)
158
+
159
+ E-Mail = [email protected]
160
+
161
+ Telegram: https://t.me/ProfShafiei
162
+
163
+ ## ☠️ گزارش خطا
164
+
165
+ اگر با مشکلی در پیکربندی مواجه هستید یا چیزی آنطور که انتظار دارید کار نمی‌کند، لطفا از [email protected] استفاده کنید.طرح مشکلات بر روی GitLab یا Github نیز پذیرفته می‌شوند.
166
+
167
+
168
+
README.md CHANGED
@@ -1,3 +1,168 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Abdal XSS AI Engine
2
+
3
+ ## 🎤 README Translation
4
+ - [English](README.md)
5
+ - [فارسی](README.fa.md)
6
+
7
+
8
+
9
+ <p align="center"><img src="scr.jpg?raw=true"></p>
10
+
11
+
12
+ ## 💎 General purpose
13
+ The Abdal XSS AI Engine was developed to provide a free and advanced solution for combating XSS attacks, particularly in Iran, where there is a lack of local cybersecurity models. This AI-based model addresses the crucial need for enhanced cybersecurity and aims to protect users by preventing XSS attacks more effectively.
14
+
15
+
16
+ ## 🛠️ Development Environment Setup
17
+ - **Python 3.7 or higher**
18
+ - **Flask** (for building RESTful APIs)
19
+ - **TensorFlow** (Deep Learning models)
20
+ - **Scikit-learn** (for text preprocessing and TF-IDF vectorization)
21
+ - **Pandas** (for large-scale data management)
22
+ - **Deep understanding of web security and XSS attacks**
23
+ - **Git** (version control and repository management)
24
+
25
+
26
+
27
+ ### 🔥 Requirements
28
+
29
+ - **Python 3.7 or higher**
30
+ - **Flask**
31
+ - **TensorFlow**
32
+ - **Scikit-learn**
33
+ - **Pandas**
34
+ - **Pickle**
35
+
36
+
37
+ ## ✨ Features
38
+
39
+ - Ability to process and detect hundreds of thousands of XSS patterns, including new emerging threats.
40
+ - Utilizes a deep learning model with multiple Dense and Dropout layers.
41
+ - Trained using a combined dataset from multiple CSV files.
42
+ - Employs TF-IDF technique for text feature extraction from XSS attacks.
43
+ - Capability to improve model accuracy with new data and continuous updates.
44
+ - Supports model optimization using the Adam optimizer and accuracy metrics.
45
+ - Saves the final model and vectorizer for future use and deployment in various environments.
46
+
47
+
48
+ ## 📝️ How it Works?
49
+
50
+ You can use the model as an API for detecting XSS attacks by using the following code:
51
+ ```python
52
+ from flask import Flask, request, jsonify
53
+ import tensorflow as tf
54
+ import pickle
55
+ import numpy as np
56
+
57
+ app = Flask(__name__)
58
+
59
+ # Load the model and vectorizer
60
+ model = tf.keras.models.load_model('Abdal_XSS_AI_Engine.h5')
61
+ with open('vectorizer.pkl', 'rb') as f:
62
+ vectorizer = pickle.load(f)
63
+
64
+
65
+ @app.route('/predict', methods=['POST'])
66
+ def predict():
67
+ data = request.json
68
+ sentences = data['sentences']
69
+
70
+ # Preprocess the input data using the vectorizer
71
+ X_new = vectorizer.transform(sentences).toarray()
72
+
73
+ # Make predictions
74
+ predictions = (model.predict(X_new) > 0.5).astype(int)
75
+
76
+ # Prepare and return the response
77
+ response = {
78
+ 'predictions': ['XSS Detected' if pred == 1 else 'No XSS Detected' for pred in predictions.flatten()]
79
+ }
80
+ return jsonify(response)
81
+
82
+
83
+ if __name__ == '__main__':
84
+ app.run(debug=True)
85
+
86
+ ```
87
+ In addition to the API, you can also use the model to read data from a text file and detect attacks. The following code is an example of this use case:
88
+
89
+ ```python
90
+ import os
91
+ import tensorflow as tf
92
+ import pickle
93
+
94
+ # Disable oneDNN custom operations
95
+ os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
96
+ # Set TensorFlow logging level to 'ERROR' to suppress the info and warning messages
97
+ os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
98
+
99
+ # Check if model and vectorizer files exist
100
+ model_path = 'Abdal_XSS_AI_Engine.keras'
101
+ vectorizer_path = 'vectorizer.pkl'
102
+
103
+ if not os.path.exists(model_path):
104
+ raise FileNotFoundError(f"Model file not found: {model_path}")
105
+ if not os.path.exists(vectorizer_path):
106
+ raise FileNotFoundError(f"Vectorizer file not found: {vectorizer_path}")
107
+
108
+ # Load the model from the Keras format
109
+ model_name = "Abdal XSS AI Engine"
110
+ model = tf.keras.models.load_model(model_path)
111
+
112
+ # Load the vectorizer
113
+ with open(vectorizer_path, 'rb') as f:
114
+ vectorizer = pickle.load(f)
115
+
116
+ # Read new data (sentences) from a file (e.g., 'attack-xss-payload.txt')
117
+ input_file = 'attack-xss-payload.txt'
118
+ if not os.path.exists(input_file):
119
+ raise FileNotFoundError(f"Input file not found: {input_file}")
120
+
121
+ with open(input_file, 'r', encoding='utf-8') as file:
122
+ new_sentences = [line.strip() for line in file if line.strip()] # Reading each line from file
123
+
124
+ # Check if any sentence exists for prediction
125
+ if not new_sentences:
126
+ raise ValueError("No data available for prediction.")
127
+
128
+ # Preprocess the new data using the loaded TF-IDF vectorizer
129
+ X_new = vectorizer.transform(new_sentences).toarray()
130
+
131
+ # Predict using the loaded model
132
+ predictions = (model.predict(X_new) > 0.5).astype(int)
133
+
134
+ # Print predictions
135
+ for i, sentence in enumerate(new_sentences):
136
+ print(f"Sentence: {sentence}")
137
+ print(f"Prediction: {'XSS Detected' if predictions[i] == 1 else 'No XSS Detected'}\n")
138
+
139
+ ```
140
+ ### Abdal XSS AI Engine - TensorFlow Model
141
+
142
+ To use the trained model in your TensorFlow project, simply run the following Python code:
143
+
144
+ ```python
145
+ import tensorflow as tf
146
+
147
+ # Load the saved model
148
+ model = tf.keras.models.load_model('Abdal_XSS_AI_Engine')
149
+
150
+ print("✅ Model loaded successfully!")
151
+ ```
152
+
153
+ ## ❤️ Donation
154
+
155
+ https://ebrasha.com/abdal-donation
156
+
157
+ ## 🤵 Programmer
158
+ Handcrafted with Passion by Ebrahim Shafiei (EbraSha)
159
+
160
+ E-Mail = [email protected]
161
+
162
+ Telegram: https://t.me/ProfShafiei
163
+
164
+ ## ☠️ Reporting Issues
165
+
166
+ If you are facing a configuration issue or something is not working as you expected to be, please use the **[email protected]** . Issues on GitLab or Github are also welcomed.
167
+
168
+
Use-Model-With-File.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Author: Ebrahim Shafiei (EbraSha)
2
+
3
+ import os
4
+ import tensorflow as tf
5
+ import pickle
6
+
7
+ # Disable oneDNN custom operations
8
+ os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
9
+ # Set TensorFlow logging level to 'ERROR' to suppress the info and warning messages
10
+ os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
11
+
12
+ # Check if model and vectorizer files exist
13
+ model_path = 'Abdal_XSS_AI_Engine.keras'
14
+ vectorizer_path = 'vectorizer.pkl'
15
+
16
+ if not os.path.exists(model_path):
17
+ raise FileNotFoundError(f"Model file not found: {model_path}")
18
+ if not os.path.exists(vectorizer_path):
19
+ raise FileNotFoundError(f"Vectorizer file not found: {vectorizer_path}")
20
+
21
+ # Load the model from the Keras format
22
+ model_name = "Abdal XSS AI Engine"
23
+ model = tf.keras.models.load_model(model_path)
24
+
25
+ # Load the vectorizer
26
+ with open(vectorizer_path, 'rb') as f:
27
+ vectorizer = pickle.load(f)
28
+
29
+ # Read new data (sentences) from a file (e.g., 'attack-xss-payload.txt')
30
+ input_file = 'attack-xss-payload.txt'
31
+ if not os.path.exists(input_file):
32
+ raise FileNotFoundError(f"Input file not found: {input_file}")
33
+
34
+ with open(input_file, 'r', encoding='utf-8') as file:
35
+ new_sentences = [line.strip() for line in file if line.strip()] # Reading each line from file
36
+
37
+ # Check if any sentence exists for prediction
38
+ if not new_sentences:
39
+ raise ValueError("No data available for prediction.")
40
+
41
+ # Preprocess the new data using the loaded TF-IDF vectorizer
42
+ X_new = vectorizer.transform(new_sentences).toarray()
43
+
44
+ # Predict using the loaded model
45
+ predictions = (model.predict(X_new) > 0.5).astype(int)
46
+
47
+ # Print predictions
48
+ for i, sentence in enumerate(new_sentences):
49
+ print(f"Sentence: {sentence}")
50
+ print(f"Prediction: {'XSS Detected' if predictions[i] == 1 else 'No XSS Detected'}\n")
Use-Model-api.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from flask import Flask, request, jsonify
2
+ import tensorflow as tf
3
+ import pickle
4
+ import numpy as np
5
+
6
+ app = Flask(__name__)
7
+
8
+ # Load the model and vectorizer
9
+ model = tf.keras.models.load_model('Abdal_XSS_AI_Engine.h5')
10
+ with open('vectorizer.pkl', 'rb') as f:
11
+ vectorizer = pickle.load(f)
12
+
13
+
14
+ @app.route('/predict', methods=['POST'])
15
+ def predict():
16
+ data = request.json
17
+ sentences = data['sentences']
18
+
19
+ # Preprocess the input data using the vectorizer
20
+ X_new = vectorizer.transform(sentences).toarray()
21
+
22
+ # Make predictions
23
+ predictions = (model.predict(X_new) > 0.5).astype(int)
24
+
25
+ # Prepare and return the response
26
+ response = {
27
+ 'predictions': ['XSS Detected' if pred == 1 else 'No XSS Detected' for pred in predictions.flatten()]
28
+ }
29
+ return jsonify(response)
30
+
31
+
32
+ if __name__ == '__main__':
33
+ app.run(debug=True)
csv-dataset/XSS_dataset.csv ADDED
The diff for this file is too large to render. See raw diff
 
requirements.txt ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ Flask
2
+ tensorflow
3
+ scikit-learn
4
+ pandas
5
+ numpy
6
+ pickle-mixin
scr.jpg ADDED
vectorizer.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1025f0154ae4099f9220a20c5bf72d0a6ab3228d578af3ed3b55d5740958a270
3
+ size 247300