from flask import Flask, request, jsonify import tensorflow as tf import pickle import numpy as np app = Flask(__name__) # Load the model and vectorizer model = tf.keras.models.load_model('Abdal_XSS_AI_Engine.h5') with open('vectorizer.pkl', 'rb') as f: vectorizer = pickle.load(f) @app.route('/predict', methods=['POST']) def predict(): data = request.json sentences = data['sentences'] # Preprocess the input data using the vectorizer X_new = vectorizer.transform(sentences).toarray() # Make predictions predictions = (model.predict(X_new) > 0.5).astype(int) # Prepare and return the response response = { 'predictions': ['XSS Detected' if pred == 1 else 'No XSS Detected' for pred in predictions.flatten()] } return jsonify(response) if __name__ == '__main__': app.run(debug=True)