--- license: mit base_model: roberta-base tags: - generated_from_trainer datasets: - fin metrics: - precision - recall - f1 - accuracy model-index: - name: roberta-base-finetuned-ner results: - task: name: Token Classification type: token-classification dataset: name: fin type: fin config: fin split: validation args: fin metrics: - name: Precision type: precision value: 0.9408740359897172 - name: Recall type: recall value: 0.9682539682539683 - name: F1 type: f1 value: 0.954367666232073 - name: Accuracy type: accuracy value: 0.9930041974815111 --- # roberta-base-finetuned-ner This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the fin dataset. It achieves the following results on the evaluation set: - Loss: 0.0331 - Precision: 0.9409 - Recall: 0.9683 - F1: 0.9544 - Accuracy: 0.9930 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | No log | 1.0 | 64 | 0.0650 | 0.9457 | 0.9206 | 0.9330 | 0.9884 | | No log | 2.0 | 128 | 0.0366 | 0.9141 | 0.9577 | 0.9354 | 0.9924 | | No log | 3.0 | 192 | 0.0331 | 0.9409 | 0.9683 | 0.9544 | 0.9930 | ### Framework versions - Transformers 4.34.1 - Pytorch 2.1.0+cu118 - Datasets 2.14.6 - Tokenizers 0.14.1