SentenceTransformer based on neuralmind/bert-large-portuguese-cased

This is a sentence-transformers model finetuned from neuralmind/bert-large-portuguese-cased on the score dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: neuralmind/bert-large-portuguese-cased
  • Maximum Sequence Length: 512 tokens
  • Output Dimensionality: 1024 dimensions
  • Similarity Function: Cosine Similarity
  • Training Dataset:
    • score

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BertModel'})
  (1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("eliasjacob/st-bert-large-portuguese-cased-assin2")
# Run inference
sentences = [
    'Não tem nenhuma mulher cortando uma cebola',
    'Um cavalo está parado',
    'Tem gente fazendo música',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.2669, 0.4234],
#         [0.2669, 1.0000, 0.3680],
#         [0.4234, 0.3680, 1.0000]])

Evaluation

Metrics

Semantic Similarity

Metric Value
pearson_cosine 0.836
spearman_cosine 0.7999

Semantic Similarity

Metric Value
pearson_cosine 0.9483
spearman_cosine 0.9197

Training Details

Training Dataset

score

  • Dataset: score
  • Size: 6,500 training samples
  • Columns: sentence1, sentence2, and label
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label
    type string string float
    details
    • min: 6 tokens
    • mean: 13.9 tokens
    • max: 38 tokens
    • min: 6 tokens
    • mean: 13.1 tokens
    • max: 36 tokens
    • min: 0.3
    • mean: 0.93
    • max: 1.0
  • Samples:
    sentence1 sentence2 label
    Uma criança risonha está segurando uma pistola de água e sendo espirrada com água Uma criança está segurando uma pistola de água 0.9
    Os homens estão cuidadosamente colocando as malas no porta-malas de um carro Os homens estão colocando bagagens dentro do porta-malas de um carro 0.9
    Uma pessoa tem cabelo loiro e esvoaçante e está tocando violão Um guitarrista tem cabelo loiro e esvoaçante 0.9399999618530274
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Evaluation Dataset

score

  • Dataset: score
  • Size: 2,448 evaluation samples
  • Columns: sentence1, sentence2, and label
  • Approximate statistics based on the first 1000 samples:
    sentence1 sentence2 label
    type string string float
    details
    • min: 6 tokens
    • mean: 14.03 tokens
    • max: 36 tokens
    • min: 6 tokens
    • mean: 13.29 tokens
    • max: 33 tokens
    • min: 0.2
    • mean: 0.71
    • max: 1.0
  • Samples:
    sentence1 sentence2 label
    O cachorro caramelo está assistindo um cachorro castanho que está nadando em uma lagoa Um cachorro de estimação está de pé no banco e está olhando outro cachorro, que é castanho, na lagoa 0.7599999904632568
    O cara está fazendo exercícios no chão Um cara está fazendo exercícios 0.75
    Um cachorro grande e um cachorro pequenino estão parados ao lado do balcão da cozinha e estão investigando Um cachorro grande e um cachorro pequenino estão de pé no balcão da cozinha e investigam 0.8800000190734864
  • Loss: CosineSimilarityLoss with these parameters:
    {
        "loss_fct": "torch.nn.modules.loss.MSELoss"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: epoch
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • learning_rate: 3e-05
  • num_train_epochs: 20
  • warmup_ratio: 0.1
  • bf16: True
  • load_best_model_at_end: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: epoch
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 3e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 20
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • bf16: True
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: True
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • parallelism_config: None
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch_fused
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • project: huggingface
  • trackio_space_id: trackio
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • hub_revision: None
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: no
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • liger_kernel_config: None
  • eval_use_gather_object: False
  • average_tokens_across_devices: True
  • prompts: None
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional
  • router_mapping: {}
  • learning_rate_mapping: {}

Training Logs

Epoch Step Training Loss score loss assin2_score_spearman_cosine
-1 -1 - - 0.6192
1.0 26 - 0.0242 0.6936
1.9231 50 0.0201 - -
2.0 52 - 0.0214 0.7755
3.0 78 - 0.0209 0.7941
3.8462 100 0.006 - -
4.0 104 - 0.0198 0.7998
5.0 130 - 0.0207 0.7999
5.7692 150 0.0033 - -
6.0 156 - 0.0209 0.7983
7.0 182 - 0.0203 0.8011
7.6923 200 0.0024 - -
8.0 208 - 0.0214 0.8026
9.0 234 - 0.0207 0.8021
9.6154 250 0.0019 - -
10.0 260 - 0.0207 0.8021
11.0 286 - 0.0210 0.8023
11.5385 300 0.0016 - -
12.0 312 - 0.0212 0.8036
13.0 338 - 0.0212 0.8027
13.4615 350 0.0015 - -
14.0 364 - 0.0213 0.8016
15.0 390 - 0.0210 0.8031
15.3846 400 0.0013 - -
16.0 416 - 0.0213 0.8031
17.0 442 - 0.0215 0.8040
17.3077 450 0.0012 - -
18.0 468 - 0.0211 0.8031
19.0 494 - 0.0212 0.8033
19.2308 500 0.0012 - -
20.0 520 - 0.0212 0.8033
-1 -1 - - 0.9197
  • The bold row denotes the saved checkpoint.

Framework Versions

  • Python: 3.13.5
  • Sentence Transformers: 5.1.1
  • Transformers: 4.57.1
  • PyTorch: 2.8.0+cu128
  • Accelerate: 1.11.0
  • Datasets: 4.2.0
  • Tokenizers: 0.22.1

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
Downloads last month
6
Safetensors
Model size
0.3B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for eliasjacob/st-bert-large-portuguese-cased-assin2

Finetuned
(59)
this model

Evaluation results