SentenceTransformer based on neuralmind/bert-large-portuguese-cased
This is a sentence-transformers model finetuned from neuralmind/bert-large-portuguese-cased on the score dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: neuralmind/bert-large-portuguese-cased
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 1024 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- score
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("eliasjacob/st-bert-large-portuguese-cased-assin2")
# Run inference
sentences = [
'Não tem nenhuma mulher cortando uma cebola',
'Um cavalo está parado',
'Tem gente fazendo música',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 0.2669, 0.4234],
# [0.2669, 1.0000, 0.3680],
# [0.4234, 0.3680, 1.0000]])
Evaluation
Metrics
Semantic Similarity
- Dataset:
assin2_score - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.836 |
| spearman_cosine | 0.7999 |
Semantic Similarity
- Dataset:
assin2_score - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.9483 |
| spearman_cosine | 0.9197 |
Training Details
Training Dataset
score
- Dataset: score
- Size: 6,500 training samples
- Columns:
sentence1,sentence2, andlabel - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string float details - min: 6 tokens
- mean: 13.9 tokens
- max: 38 tokens
- min: 6 tokens
- mean: 13.1 tokens
- max: 36 tokens
- min: 0.3
- mean: 0.93
- max: 1.0
- Samples:
sentence1 sentence2 label Uma criança risonha está segurando uma pistola de água e sendo espirrada com águaUma criança está segurando uma pistola de água0.9Os homens estão cuidadosamente colocando as malas no porta-malas de um carroOs homens estão colocando bagagens dentro do porta-malas de um carro0.9Uma pessoa tem cabelo loiro e esvoaçante e está tocando violãoUm guitarrista tem cabelo loiro e esvoaçante0.9399999618530274 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Evaluation Dataset
score
- Dataset: score
- Size: 2,448 evaluation samples
- Columns:
sentence1,sentence2, andlabel - Approximate statistics based on the first 1000 samples:
sentence1 sentence2 label type string string float details - min: 6 tokens
- mean: 14.03 tokens
- max: 36 tokens
- min: 6 tokens
- mean: 13.29 tokens
- max: 33 tokens
- min: 0.2
- mean: 0.71
- max: 1.0
- Samples:
sentence1 sentence2 label O cachorro caramelo está assistindo um cachorro castanho que está nadando em uma lagoaUm cachorro de estimação está de pé no banco e está olhando outro cachorro, que é castanho, na lagoa0.7599999904632568O cara está fazendo exercícios no chãoUm cara está fazendo exercícios0.75Um cachorro grande e um cachorro pequenino estão parados ao lado do balcão da cozinha e estão investigandoUm cachorro grande e um cachorro pequenino estão de pé no balcão da cozinha e investigam0.8800000190734864 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: epochper_device_train_batch_size: 128per_device_eval_batch_size: 128learning_rate: 3e-05num_train_epochs: 20warmup_ratio: 0.1bf16: Trueload_best_model_at_end: True
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: epochprediction_loss_only: Trueper_device_train_batch_size: 128per_device_eval_batch_size: 128per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 3e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 20max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}parallelism_config: Nonedeepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torch_fusedoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthproject: huggingfacetrackio_space_id: trackioddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsehub_revision: Nonegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: noneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseliger_kernel_config: Noneeval_use_gather_object: Falseaverage_tokens_across_devices: Trueprompts: Nonebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportionalrouter_mapping: {}learning_rate_mapping: {}
Training Logs
| Epoch | Step | Training Loss | score loss | assin2_score_spearman_cosine |
|---|---|---|---|---|
| -1 | -1 | - | - | 0.6192 |
| 1.0 | 26 | - | 0.0242 | 0.6936 |
| 1.9231 | 50 | 0.0201 | - | - |
| 2.0 | 52 | - | 0.0214 | 0.7755 |
| 3.0 | 78 | - | 0.0209 | 0.7941 |
| 3.8462 | 100 | 0.006 | - | - |
| 4.0 | 104 | - | 0.0198 | 0.7998 |
| 5.0 | 130 | - | 0.0207 | 0.7999 |
| 5.7692 | 150 | 0.0033 | - | - |
| 6.0 | 156 | - | 0.0209 | 0.7983 |
| 7.0 | 182 | - | 0.0203 | 0.8011 |
| 7.6923 | 200 | 0.0024 | - | - |
| 8.0 | 208 | - | 0.0214 | 0.8026 |
| 9.0 | 234 | - | 0.0207 | 0.8021 |
| 9.6154 | 250 | 0.0019 | - | - |
| 10.0 | 260 | - | 0.0207 | 0.8021 |
| 11.0 | 286 | - | 0.0210 | 0.8023 |
| 11.5385 | 300 | 0.0016 | - | - |
| 12.0 | 312 | - | 0.0212 | 0.8036 |
| 13.0 | 338 | - | 0.0212 | 0.8027 |
| 13.4615 | 350 | 0.0015 | - | - |
| 14.0 | 364 | - | 0.0213 | 0.8016 |
| 15.0 | 390 | - | 0.0210 | 0.8031 |
| 15.3846 | 400 | 0.0013 | - | - |
| 16.0 | 416 | - | 0.0213 | 0.8031 |
| 17.0 | 442 | - | 0.0215 | 0.8040 |
| 17.3077 | 450 | 0.0012 | - | - |
| 18.0 | 468 | - | 0.0211 | 0.8031 |
| 19.0 | 494 | - | 0.0212 | 0.8033 |
| 19.2308 | 500 | 0.0012 | - | - |
| 20.0 | 520 | - | 0.0212 | 0.8033 |
| -1 | -1 | - | - | 0.9197 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.13.5
- Sentence Transformers: 5.1.1
- Transformers: 4.57.1
- PyTorch: 2.8.0+cu128
- Accelerate: 1.11.0
- Datasets: 4.2.0
- Tokenizers: 0.22.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- 6
Model tree for eliasjacob/st-bert-large-portuguese-cased-assin2
Base model
neuralmind/bert-large-portuguese-casedEvaluation results
- Pearson Cosine on assin2 scoreself-reported0.836
- Spearman Cosine on assin2 scoreself-reported0.800
- Pearson Cosine on assin2 scoreself-reported0.948
- Spearman Cosine on assin2 scoreself-reported0.920