Add detailed model card
Browse files
README.md
CHANGED
|
@@ -1,72 +1,45 @@
|
|
|
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
license:
|
| 4 |
-
|
|
|
|
| 5 |
tags:
|
| 6 |
-
-
|
| 7 |
-
-
|
|
|
|
| 8 |
metrics:
|
| 9 |
-
- accuracy
|
| 10 |
-
- f1
|
| 11 |
-
- precision
|
| 12 |
-
- recall
|
| 13 |
-
model-index:
|
| 14 |
-
- name: modern-bert-finetuned-query-classification
|
| 15 |
-
results: []
|
| 16 |
---
|
| 17 |
|
| 18 |
-
|
| 19 |
-
should probably proofread and complete it, then remove this comment. -->
|
| 20 |
-
|
| 21 |
-
# modern-bert-finetuned-query-classification
|
| 22 |
|
| 23 |
-
This model is a fine-tuned version of [
|
| 24 |
-
It achieves the following results on the evaluation set:
|
| 25 |
-
- Loss: 0.1256
|
| 26 |
-
- Accuracy: 0.9759
|
| 27 |
-
- F1: 0.9759
|
| 28 |
-
- Precision: 0.9763
|
| 29 |
-
- Recall: 0.9759
|
| 30 |
|
| 31 |
## Model description
|
| 32 |
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
## Intended uses & limitations
|
| 36 |
-
|
| 37 |
-
More information needed
|
| 38 |
|
| 39 |
## Training and evaluation data
|
| 40 |
|
| 41 |
-
|
| 42 |
|
| 43 |
## Training procedure
|
| 44 |
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
-
|
| 49 |
-
-
|
| 50 |
-
-
|
| 51 |
-
- seed: 42
|
| 52 |
-
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
| 53 |
-
- lr_scheduler_type: linear
|
| 54 |
-
- num_epochs: 5
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|
| 59 |
-
|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:|
|
| 60 |
-
| No log | 1.0 | 315 | 0.1474 | 0.9648 | 0.9647 | 0.9649 | 0.9648 |
|
| 61 |
-
| 0.1965 | 2.0 | 630 | 0.1226 | 0.9704 | 0.9704 | 0.9718 | 0.9704 |
|
| 62 |
-
| 0.1965 | 3.0 | 945 | 0.1192 | 0.9741 | 0.9742 | 0.9757 | 0.9741 |
|
| 63 |
-
| 0.0426 | 4.0 | 1260 | 0.1250 | 0.9741 | 0.9741 | 0.9742 | 0.9741 |
|
| 64 |
-
| 0.0042 | 5.0 | 1575 | 0.1256 | 0.9759 | 0.9759 | 0.9763 | 0.9759 |
|
| 65 |
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
-
|
| 68 |
|
| 69 |
-
|
| 70 |
-
- Pytorch 2.6.0+cu124
|
| 71 |
-
- Datasets 3.5.1
|
| 72 |
-
- Tokenizers 0.21.1
|
|
|
|
| 1 |
+
|
| 2 |
---
|
| 3 |
+
language: en
|
| 4 |
+
license: mit
|
| 5 |
+
datasets:
|
| 6 |
+
- your_dataset_name
|
| 7 |
tags:
|
| 8 |
+
- text-classification
|
| 9 |
+
- bert
|
| 10 |
+
- query-classification
|
| 11 |
metrics:
|
| 12 |
+
- accuracy: 0.975925925925926
|
| 13 |
+
- f1: 0.975935077462957
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
---
|
| 15 |
|
| 16 |
+
# BERT Fine-tuned for Query Classification
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/answerdotai/ModernBERT-base) on a query classification dataset.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
## Model description
|
| 21 |
|
| 22 |
+
The model was fine-tuned on queries to classify them into specific categories.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
## Training and evaluation data
|
| 25 |
|
| 26 |
+
The model was trained on [describe your dataset here].
|
| 27 |
|
| 28 |
## Training procedure
|
| 29 |
|
| 30 |
+
The model was trained with the following hyperparameters:
|
| 31 |
+
- Learning rate: 2e-05
|
| 32 |
+
- Batch size: 8
|
| 33 |
+
- Number of epochs: 5
|
| 34 |
+
- Optimizer: AdamW
|
| 35 |
+
- Weight decay: 0.01
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
|
| 37 |
+
## Evaluation results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
+
The model achieved the following results on the validation set:
|
| 40 |
+
- Accuracy: 0.9759
|
| 41 |
+
- F1 Score: 0.9759
|
| 42 |
|
| 43 |
+
## Uses and limitations
|
| 44 |
|
| 45 |
+
[Discuss the intended uses and limitations of your model]
|
|
|
|
|
|
|
|
|