File size: 12,316 Bytes
fd3eefd
14f9e71
 
 
fd3eefd
 
14f9e71
fd3eefd
 
14f9e71
 
fd3eefd
 
14f9e71
 
 
fd3eefd
 
 
 
 
14f9e71
 
fd3eefd
 
 
 
 
14f9e71
fd3eefd
14f9e71
 
 
fd3eefd
 
14f9e71
 
fd3eefd
14f9e71
 
fd3eefd
 
 
14f9e71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fd3eefd
14f9e71
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca9c48f
 
902b109
14f9e71
 
fd3eefd
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
---
base_model: minishlab/potion-base-4m
datasets:
- enguard/multi-lingual-prompt-moderation
library_name: model2vec
license: mit
model_name: enguard/tiny-guard-4m-en-prompt-harmfulness-multilabel-moderation
tags:
- static-embeddings
- text-classification
- model2vec
---

# enguard/tiny-guard-4m-en-prompt-harmfulness-multilabel-moderation

This model is a fine-tuned Model2Vec classifier based on [minishlab/potion-base-4m](https://huggingface.co/minishlab/potion-base-4m) for the prompt-harmfulness-multilabel found in the [enguard/multi-lingual-prompt-moderation](https://huggingface.co/datasets/enguard/multi-lingual-prompt-moderation) dataset.



## Installation

```bash
pip install model2vec[inference]
```

## Usage

```python
from model2vec.inference import StaticModelPipeline

model = StaticModelPipeline.from_pretrained(
  "enguard/tiny-guard-4m-en-prompt-harmfulness-multilabel-moderation"
)


# Supports single texts. Format input as a single text:
text = "Example sentence"

model.predict([text])
model.predict_proba([text])

```

## Why should you use these models?

- Optimized for precision to reduce false positives.
- Extremely fast inference: up to x500 faster than SetFit.

## This model variant

Below is a quick overview of the model variant and core metrics.

| Field | Value |
|---|---|
| Classifies | prompt-harmfulness-multilabel |
| Base Model | [minishlab/potion-base-4m](https://huggingface.co/minishlab/potion-base-4m) |
| Precision | 0.7924 |
| Recall | 0.5663 |
| F1 | 0.6606 |


<details>
<summary><b>Full metrics (JSON)</b></summary>

```json
{
  "0": {
    "precision": 0.8861301369863014,
    "recall": 0.5229914098029308,
    "f1-score": 0.657769304099142,
    "support": 1979.0
  },
  "1": {
    "precision": 0.6036036036036037,
    "recall": 0.5381526104417671,
    "f1-score": 0.5690021231422505,
    "support": 249.0
  },
  "2": {
    "precision": 0.3404255319148936,
    "recall": 0.45714285714285713,
    "f1-score": 0.3902439024390244,
    "support": 35.0
  },
  "3": {
    "precision": 0.807920792079208,
    "recall": 0.7022375215146299,
    "f1-score": 0.7513812154696132,
    "support": 581.0
  },
  "4": {
    "precision": 0.6041666666666666,
    "recall": 0.6304347826086957,
    "f1-score": 0.6170212765957447,
    "support": 276.0
  },
  "micro avg": {
    "precision": 0.7923766816143498,
    "recall": 0.5663461538461538,
    "f1-score": 0.6605607476635514,
    "support": 3120.0
  },
  "macro avg": {
    "precision": 0.6484493462501347,
    "recall": 0.5701918363021762,
    "f1-score": 0.597083564349155,
    "support": 3120.0
  },
  "weighted avg": {
    "precision": 0.8179537539128939,
    "recall": 0.5663461538461538,
    "f1-score": 0.6615114989064933,
    "support": 3120.0
  },
  "samples avg": {
    "precision": 0.2887586164451009,
    "recall": 0.2837118414574102,
    "f1-score": 0.28206812267004294,
    "support": 3120.0
  }
}
```
</details>


<details>
<summary><b>Sample Predictions</b></summary>

| Text | True Label | Predicted Label |
|------|------------|-----------------|
| If you can fold your penis into the shape of a vulva, you deserve not to be caught. In fact you deserve an ace origami prize. | harassment | harassment |
| I'm surprised they let you stay without buying anything. |  |  |
| Pirates flew the [Jolly Roger](http://i.imgur.com/o9pyLSe.jpg).\n\nPimps blew the [roger](http://en.wikipedia.org/wiki/Roger#Slang) jolly. |  |  |
| Seriously?<br><br>You're "depressed" because of a story? Oh, Reddit. |  |  |
| Yeah what kind of community manager publicly mocks their players achievements? With no clarification, straight douche. | harassment | harassment |
| If you can fold your penis into the shape of a vulva, you deserve not to be caught. In fact you deserve an ace origami prize. | harassment | harassment |
</details>


<details>
<summary><b>Prediction Speed Benchmarks</b></summary>

| Dataset Size | Time (seconds) | Predictions/Second |
|--------------|----------------|---------------------|
| 1 | 0.0002 | 4466.78 |
| 1000 | 0.1078 | 9276.19 |
| 5452 | 0.3721 | 14653.66 |
</details>


## Other model variants

Below is a general overview of the best-performing models for each dataset variant.

| Classifies | Model | Precision | Recall | F1 |
| --- | --- | --- | --- | --- |
| prompt-harassment-binary | [enguard/tiny-guard-2m-en-prompt-harassment-binary-moderation](https://huggingface.co/enguard/tiny-guard-2m-en-prompt-harassment-binary-moderation) | 0.8788 | 0.7180 | 0.7903 |
| prompt-harmfulness-binary | [enguard/tiny-guard-2m-en-prompt-harmfulness-binary-moderation](https://huggingface.co/enguard/tiny-guard-2m-en-prompt-harmfulness-binary-moderation) | 0.8543 | 0.7256 | 0.7847 |
| prompt-harmfulness-multilabel | [enguard/tiny-guard-2m-en-prompt-harmfulness-multilabel-moderation](https://huggingface.co/enguard/tiny-guard-2m-en-prompt-harmfulness-multilabel-moderation) | 0.7687 | 0.5006 | 0.6064 |
| prompt-hate-speech-binary | [enguard/tiny-guard-2m-en-prompt-hate-speech-binary-moderation](https://huggingface.co/enguard/tiny-guard-2m-en-prompt-hate-speech-binary-moderation) | 0.9141 | 0.7269 | 0.8098 |
| prompt-self-harm-binary | [enguard/tiny-guard-2m-en-prompt-self-harm-binary-moderation](https://huggingface.co/enguard/tiny-guard-2m-en-prompt-self-harm-binary-moderation) | 0.8929 | 0.7143 | 0.7937 |
| prompt-sexual-content-binary | [enguard/tiny-guard-2m-en-prompt-sexual-content-binary-moderation](https://huggingface.co/enguard/tiny-guard-2m-en-prompt-sexual-content-binary-moderation) | 0.9256 | 0.8141 | 0.8663 |
| prompt-violence-binary | [enguard/tiny-guard-2m-en-prompt-violence-binary-moderation](https://huggingface.co/enguard/tiny-guard-2m-en-prompt-violence-binary-moderation) | 0.9017 | 0.7645 | 0.8275 |
| prompt-harassment-binary | [enguard/tiny-guard-4m-en-prompt-harassment-binary-moderation](https://huggingface.co/enguard/tiny-guard-4m-en-prompt-harassment-binary-moderation) | 0.8895 | 0.7160 | 0.7934 |
| prompt-harmfulness-binary | [enguard/tiny-guard-4m-en-prompt-harmfulness-binary-moderation](https://huggingface.co/enguard/tiny-guard-4m-en-prompt-harmfulness-binary-moderation) | 0.8565 | 0.7540 | 0.8020 |
| prompt-harmfulness-multilabel | [enguard/tiny-guard-4m-en-prompt-harmfulness-multilabel-moderation](https://huggingface.co/enguard/tiny-guard-4m-en-prompt-harmfulness-multilabel-moderation) | 0.7924 | 0.5663 | 0.6606 |
| prompt-hate-speech-binary | [enguard/tiny-guard-4m-en-prompt-hate-speech-binary-moderation](https://huggingface.co/enguard/tiny-guard-4m-en-prompt-hate-speech-binary-moderation) | 0.9198 | 0.7831 | 0.8460 |
| prompt-self-harm-binary | [enguard/tiny-guard-4m-en-prompt-self-harm-binary-moderation](https://huggingface.co/enguard/tiny-guard-4m-en-prompt-self-harm-binary-moderation) | 0.9062 | 0.8286 | 0.8657 |
| prompt-sexual-content-binary | [enguard/tiny-guard-4m-en-prompt-sexual-content-binary-moderation](https://huggingface.co/enguard/tiny-guard-4m-en-prompt-sexual-content-binary-moderation) | 0.9371 | 0.8468 | 0.8897 |
| prompt-violence-binary | [enguard/tiny-guard-4m-en-prompt-violence-binary-moderation](https://huggingface.co/enguard/tiny-guard-4m-en-prompt-violence-binary-moderation) | 0.8851 | 0.8370 | 0.8603 |
| prompt-harassment-binary | [enguard/tiny-guard-8m-en-prompt-harassment-binary-moderation](https://huggingface.co/enguard/tiny-guard-8m-en-prompt-harassment-binary-moderation) | 0.8895 | 0.7767 | 0.8292 |
| prompt-harmfulness-binary | [enguard/tiny-guard-8m-en-prompt-harmfulness-binary-moderation](https://huggingface.co/enguard/tiny-guard-8m-en-prompt-harmfulness-binary-moderation) | 0.8627 | 0.7912 | 0.8254 |
| prompt-harmfulness-multilabel | [enguard/tiny-guard-8m-en-prompt-harmfulness-multilabel-moderation](https://huggingface.co/enguard/tiny-guard-8m-en-prompt-harmfulness-multilabel-moderation) | 0.7902 | 0.5926 | 0.6773 |
| prompt-hate-speech-binary | [enguard/tiny-guard-8m-en-prompt-hate-speech-binary-moderation](https://huggingface.co/enguard/tiny-guard-8m-en-prompt-hate-speech-binary-moderation) | 0.9152 | 0.8233 | 0.8668 |
| prompt-self-harm-binary | [enguard/tiny-guard-8m-en-prompt-self-harm-binary-moderation](https://huggingface.co/enguard/tiny-guard-8m-en-prompt-self-harm-binary-moderation) | 0.9667 | 0.8286 | 0.8923 |
| prompt-sexual-content-binary | [enguard/tiny-guard-8m-en-prompt-sexual-content-binary-moderation](https://huggingface.co/enguard/tiny-guard-8m-en-prompt-sexual-content-binary-moderation) | 0.9382 | 0.8881 | 0.9125 |
| prompt-violence-binary | [enguard/tiny-guard-8m-en-prompt-violence-binary-moderation](https://huggingface.co/enguard/tiny-guard-8m-en-prompt-violence-binary-moderation) | 0.9042 | 0.8551 | 0.8790 |
| prompt-harassment-binary | [enguard/small-guard-32m-en-prompt-harassment-binary-moderation](https://huggingface.co/enguard/small-guard-32m-en-prompt-harassment-binary-moderation) | 0.8809 | 0.7964 | 0.8365 |
| prompt-harmfulness-binary | [enguard/small-guard-32m-en-prompt-harmfulness-binary-moderation](https://huggingface.co/enguard/small-guard-32m-en-prompt-harmfulness-binary-moderation) | 0.8548 | 0.8239 | 0.8391 |
| prompt-harmfulness-multilabel | [enguard/small-guard-32m-en-prompt-harmfulness-multilabel-moderation](https://huggingface.co/enguard/small-guard-32m-en-prompt-harmfulness-multilabel-moderation) | 0.8065 | 0.6494 | 0.7195 |
| prompt-hate-speech-binary | [enguard/small-guard-32m-en-prompt-hate-speech-binary-moderation](https://huggingface.co/enguard/small-guard-32m-en-prompt-hate-speech-binary-moderation) | 0.9207 | 0.8394 | 0.8782 |
| prompt-self-harm-binary | [enguard/small-guard-32m-en-prompt-self-harm-binary-moderation](https://huggingface.co/enguard/small-guard-32m-en-prompt-self-harm-binary-moderation) | 0.9333 | 0.8000 | 0.8615 |
| prompt-sexual-content-binary | [enguard/small-guard-32m-en-prompt-sexual-content-binary-moderation](https://huggingface.co/enguard/small-guard-32m-en-prompt-sexual-content-binary-moderation) | 0.9328 | 0.8847 | 0.9081 |
| prompt-violence-binary | [enguard/small-guard-32m-en-prompt-violence-binary-moderation](https://huggingface.co/enguard/small-guard-32m-en-prompt-violence-binary-moderation) | 0.9077 | 0.8913 | 0.8995 |
| prompt-harassment-binary | [enguard/medium-guard-128m-xx-prompt-harassment-binary-moderation](https://huggingface.co/enguard/medium-guard-128m-xx-prompt-harassment-binary-moderation) | 0.8660 | 0.8034 | 0.8336 |
| prompt-harmfulness-binary | [enguard/medium-guard-128m-xx-prompt-harmfulness-binary-moderation](https://huggingface.co/enguard/medium-guard-128m-xx-prompt-harmfulness-binary-moderation) | 0.8457 | 0.8074 | 0.8261 |
| prompt-harmfulness-multilabel | [enguard/medium-guard-128m-xx-prompt-harmfulness-multilabel-moderation](https://huggingface.co/enguard/medium-guard-128m-xx-prompt-harmfulness-multilabel-moderation) | 0.7795 | 0.6516 | 0.7098 |
| prompt-hate-speech-binary | [enguard/medium-guard-128m-xx-prompt-hate-speech-binary-moderation](https://huggingface.co/enguard/medium-guard-128m-xx-prompt-hate-speech-binary-moderation) | 0.8826 | 0.8153 | 0.8476 |
| prompt-self-harm-binary | [enguard/medium-guard-128m-xx-prompt-self-harm-binary-moderation](https://huggingface.co/enguard/medium-guard-128m-xx-prompt-self-harm-binary-moderation) | 0.9375 | 0.8571 | 0.8955 |
| prompt-sexual-content-binary | [enguard/medium-guard-128m-xx-prompt-sexual-content-binary-moderation](https://huggingface.co/enguard/medium-guard-128m-xx-prompt-sexual-content-binary-moderation) | 0.9153 | 0.8744 | 0.8944 |
| prompt-violence-binary | [enguard/medium-guard-128m-xx-prompt-violence-binary-moderation](https://huggingface.co/enguard/medium-guard-128m-xx-prompt-violence-binary-moderation) | 0.8821 | 0.8406 | 0.8609 |

## Resources

- Awesome AI Guardrails: <https://github.com/enguard-ai/awesome-ai-guardails>
- Model2Vec: https://github.com/MinishLab/model2vec
- Docs: https://minish.ai/packages/model2vec/introduction

## Citation

If you use this model, please cite Model2Vec:

```
@software{minishlab2024model2vec,
  author       = {Stephan Tulkens and {van Dongen}, Thomas},
  title        = {Model2Vec: Fast State-of-the-Art Static Embeddings},
  year         = {2024},
  publisher    = {Zenodo},
  doi          = {10.5281/zenodo.17270888},
  url          = {https://github.com/MinishLab/model2vec},
  license      = {MIT}
}
```