zhongfang-zhuang commited on
Commit
f0f2d1e
·
verified ·
1 Parent(s): 40f1dfc

Upload folder using huggingface_hub

Browse files
Files changed (7) hide show
  1. README.md +73 -3
  2. config.json +5 -0
  3. model.safetensors +3 -0
  4. models/ndlinear_util.py +140 -0
  5. models/resnet.py +227 -0
  6. models/utils_resnet.py +382 -0
  7. ndlinear.py +82 -0
README.md CHANGED
@@ -1,3 +1,73 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # FaceNet Triplet ResNet Model (Grayscale, 112x112, Mobile-friendly)
2
+
3
+ This repository provides a FaceNet-style triplet embedding model using ResNet backbones, optimized for mobile and edge devices:
4
+ - Input: **Grayscale images** (`3` channel)
5
+ - Resolution: **112x112 pixels**
6
+ - Output: **Embeddings** suitable for face recognition and verification
7
+
8
+ ## Model Details
9
+
10
+ - **Architecture:** ResNet50 with NdLinear
11
+ - **Embedding Dimension:** 512
12
+ - **Input:** 3x112x112 grayscale images (NCHW format)
13
+ - **Exported weights:** `model.safetensors`
14
+ - **Config:** `config.json`
15
+
16
+ ## Usage
17
+
18
+ ### 1. Clone or Download Files
19
+
20
+ Download/copy the `models/` directory and dependencies (`ndlinear.py`, etc.) to your project.
21
+
22
+ ### 2. Install requirements
23
+
24
+ ```bash
25
+ pip install torch safetensors
26
+ ```
27
+
28
+ ### 3. Load the model
29
+
30
+ ```python
31
+ from models.resnet import Resnet50Triplet # or your chosen variant
32
+
33
+ model = Resnet50Triplet.from_pretrained(".", safe_serialization=True)
34
+ model.eval()
35
+ ```
36
+
37
+ ### 4. Use for Face Recognition
38
+
39
+ Obtain a face embedding from an input image, and compare embeddings (e.g., with cosine similarity) to recognize or verify identities.
40
+
41
+ ```python
42
+ import torch
43
+
44
+ # Example: batch of 1 grayscale image of 112x112
45
+ images = torch.randn(1, 1, 112, 112) # (batch_size, channels, height, width)
46
+
47
+ with torch.no_grad():
48
+ embedding = model(images) # embedding output suitable for face recognition
49
+ print(embedding.shape) # (batch_size, embedding_dim)
50
+ ```
51
+
52
+ To perform recognition or verification, compare the embedding against a database of known face embeddings using distance/similarity metrics.
53
+
54
+ ## Files
55
+
56
+ - `model.safetensors` - Model weights
57
+ - `config.json` - Loader configuration
58
+ - `models/` - Model definition files
59
+ - `README.md` - This file
60
+
61
+ ## Notes
62
+
63
+ - Model is optimized for runtime on edge/mobile devices (reduced input size, grayscale input for lower computational load)
64
+ - Make sure your image preprocess pipeline produces three identical grayscaled channels, 112x112 images.
65
+
66
+ ## Credits
67
+
68
+ - Backbone based on [PyTorch torchvision ResNet](https://pytorch.org/vision/stable/models/generated/torchvision.models.resnet50.html)
69
+ - Architecture inspired by [Facenet PyTorch](https://github.com/timesler/facenet-pytorch)
70
+
71
+ ---
72
+
73
+ *For contributions or issues, open a discussion or pull request.*
config.json ADDED
@@ -0,0 +1,5 @@
 
 
 
 
 
 
1
+ {
2
+ "model_class": "Resnet50NdTriplet",
3
+ "embedding_dimension": 512,
4
+ "pretrained": false
5
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2bae12f646679e6b0b80acd9cd4cac9e2071d4c5e83053b04012b82787e14186
3
+ size 94537792
models/ndlinear_util.py ADDED
@@ -0,0 +1,140 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import json
2
+ import time
3
+
4
+ import numpy as np
5
+ import torch
6
+ import torch.nn as nn
7
+ import wandb
8
+ from fvcore.nn import FlopCountAnalysis
9
+ from sklearn.metrics import roc_curve
10
+ from torchvision import models, transforms
11
+
12
+
13
+ from ndlinear import NdLinear
14
+
15
+ transform = transforms.Compose([
16
+ transforms.Resize((224, 224)),
17
+ transforms.RandomHorizontalFlip(),
18
+ transforms.ColorJitter(brightness=0.2, contrast=0.2),
19
+ transforms.RandomRotation(10),
20
+ transforms.RandomResizedCrop((224, 224), scale=(0.8, 1.0)),
21
+ transforms.ToTensor(),
22
+ transforms.Normalize(mean=[0.485, 0.456, 0.406],
23
+ std=[0.229, 0.224, 0.225])
24
+ ])
25
+
26
+ class ReshapedNdLinear(torch.nn.Module):
27
+ def __init__(self, nd_linear_layer):
28
+ super(ReshapedNdLinear, self).__init__()
29
+ self.nd_linear = nd_linear_layer
30
+
31
+ def forward(self, x):
32
+ x = x.reshape(*x.shape, 1)
33
+ x = self.nd_linear(x)
34
+ return x.view(x.size(0), -1)
35
+
36
+
37
+ def print_cpu_layers(model):
38
+ found_cpu_layer = False
39
+ for name, module in model.named_modules():
40
+ if any(p.device.type == 'cpu' for p in module.parameters(recurse=False)):
41
+ print(f"Layer: {name}, Device: CPU")
42
+ found_cpu_layer = True
43
+ if not found_cpu_layer:
44
+ print("No layers are on the CPU.")
45
+
46
+
47
+ def calculate_flops(model, input_tensor):
48
+ model.eval()
49
+ device = next(model.parameters()).device
50
+ input_tensor = input_tensor.to(device)
51
+ flops_analysis = FlopCountAnalysis(model, input_tensor)
52
+ flops = flops_analysis.total()
53
+ return flops
54
+
55
+
56
+ def print_model_parameters(model):
57
+ return sum(p.numel() for p in model.parameters())
58
+
59
+
60
+ def measure_latency_and_flops_cuda(model, input_tensor, warmup=10, runs=100):
61
+ assert torch.cuda.is_available(), "CUDA is not available."
62
+ device = torch.device('cuda')
63
+ model.to(device)
64
+ input_tensor = input_tensor.to(device)
65
+ model.eval()
66
+ torch.backends.cudnn.benchmark = True
67
+
68
+ with torch.no_grad():
69
+ for _ in range(warmup):
70
+ _ = model(input_tensor)
71
+ torch.cuda.synchronize()
72
+
73
+ timings = []
74
+ with torch.no_grad():
75
+ for _ in range(runs):
76
+ start = time.time()
77
+ _ = model(input_tensor)
78
+ torch.cuda.synchronize()
79
+ end = time.time()
80
+ timings.append(end - start)
81
+
82
+ avg_latency = sum(timings) / len(timings)
83
+ flops = calculate_flops(model, input_tensor[:1, ...])
84
+
85
+ print(f"Average CUDA Latency over {runs} runs: {avg_latency * 1000:.3f} ms")
86
+ print(f"Approx. FPS: {1.0 / avg_latency:.2f}")
87
+ print(f"Approx. Flops: {flops / 10 ** 9:.2f} GFlops")
88
+
89
+ return avg_latency, flops
90
+
91
+
92
+ def modify_and_evaluate_backbone(model, cfg):
93
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
94
+ model.train()
95
+
96
+ in_features = model.fc.in_features
97
+ fc_nd = NdLinear((in_features, 1), (cfg.embedding_size // 32, 32))
98
+ reshaped_fc = ReshapedNdLinear(fc_nd).to(device)
99
+
100
+ # Add dropout to the student model's fully connected layer
101
+ model.fc = nn.Sequential(
102
+ nn.Dropout(p=0.2),
103
+ reshaped_fc
104
+ )
105
+
106
+ for param in model.fc.parameters():
107
+ param.requires_grad = True
108
+
109
+ total_params = print_model_parameters(model)
110
+ wandb.log({"total_parameters": total_params})
111
+
112
+ model.to(device)
113
+ print_cpu_layers(model)
114
+ print(model)
115
+ return model
116
+
117
+
118
+ def load_config(config_path='config.json'):
119
+ try:
120
+ with open(config_path, 'r') as f:
121
+ return json.load(f)
122
+ except FileNotFoundError as fe:
123
+ config = {
124
+ "learning_rate": 0.001, # Adjusted learning rate
125
+ "epochs": 1000,
126
+ "batch_size": 32,
127
+ "eval_batch_size": 512,
128
+ "eval_every": 1000
129
+ }
130
+ return config
131
+
132
+
133
+ def find_optimal_threshold(embeddings1, embeddings2, labels):
134
+ cosine_sim = np.sum(embeddings1 * embeddings2, axis=1)
135
+ fpr, tpr, thresholds = roc_curve(labels, cosine_sim)
136
+ # Youden's J statistic
137
+ j_scores = tpr - fpr
138
+ optimal_idx = np.argmax(j_scores)
139
+ optimal_threshold = thresholds[optimal_idx]
140
+ return optimal_threshold
models/resnet.py ADDED
@@ -0,0 +1,227 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch.nn as nn
2
+ from torch.nn import functional as F
3
+ from ndlinear import NdLinear
4
+ from .utils_resnet import resnet18, resnet34, resnet50, resnet101, resnet152, resnet34nd
5
+ from .ndlinear_util import ReshapedNdLinear
6
+ import torch
7
+ from safetensors.torch import save_file as safe_save, load_file as safe_load
8
+ import json
9
+ import os
10
+
11
+ class PretrainedTripletModel(nn.Module):
12
+ def save_pretrained(self, save_directory, safe_serialization=True):
13
+ os.makedirs(save_directory, exist_ok=True)
14
+ # Save config
15
+ config = {
16
+ "model_class": self.__class__.__name__,
17
+ "embedding_dimension": self.embedding_dimension,
18
+ "pretrained": self.pretrained,
19
+ }
20
+ with open(os.path.join(save_directory, "config.json"), "w") as f:
21
+ json.dump(config, f, indent=2)
22
+
23
+ # Save weights
24
+ state_dict = self.state_dict()
25
+ if safe_serialization:
26
+ safe_save(state_dict, os.path.join(save_directory, "model.safetensors"))
27
+ else:
28
+ torch.save(state_dict, os.path.join(save_directory, "pytorch_model.bin"))
29
+
30
+ @classmethod
31
+ def from_pretrained(cls, load_directory, safe_serialization=True):
32
+ # Load config
33
+ with open(os.path.join(load_directory, "config.json"), "r") as f:
34
+ config = json.load(f)
35
+ model = cls(**{k:config[k] for k in config if k in cls.__init__.__code__.co_varnames})
36
+ # Load weights
37
+ if safe_serialization:
38
+ state_dict = safe_load(os.path.join(load_directory, "model.safetensors"))
39
+ else:
40
+ state_dict = torch.load(os.path.join(load_directory, "pytorch_model.bin"), map_location="cpu")
41
+ model.load_state_dict(state_dict)
42
+ return model
43
+
44
+ class Resnet18Triplet(nn.Module):
45
+ """Constructs a ResNet-18 model for FaceNet training using triplet loss.
46
+
47
+ Args:
48
+ embedding_dimension (int): Required dimension of the resulting embedding layer that is outputted by the model.
49
+ using triplet loss. Defaults to 512.
50
+ pretrained (bool): If True, returns a model pre-trained on the ImageNet dataset from a PyTorch repository.
51
+ Defaults to False.
52
+ """
53
+
54
+ def __init__(self, embedding_dimension=512, pretrained=False):
55
+ super(Resnet18Triplet, self).__init__()
56
+ self.model = resnet18(pretrained=pretrained)
57
+
58
+ # Output embedding
59
+ input_features_fc_layer = self.model.fc.in_features
60
+ self.model.fc = nn.Linear(input_features_fc_layer, embedding_dimension, bias=False)
61
+
62
+ def forward(self, images):
63
+ """Forward pass to output the embedding vector (feature vector) after l2-normalization."""
64
+ embedding = self.model(images)
65
+ # From: https://github.com/timesler/facenet-pytorch/blob/master/models/inception_resnet_v1.py#L301
66
+ embedding = F.normalize(embedding, p=2, dim=1)
67
+
68
+ return embedding
69
+
70
+
71
+ class Resnet34Triplet(nn.Module):
72
+ """Constructs a ResNet-34 model for FaceNet training using triplet loss.
73
+
74
+ Args:
75
+ embedding_dimension (int): Required dimension of the resulting embedding layer that is outputted by the model.
76
+ using triplet loss. Defaults to 512.
77
+ pretrained (bool): If True, returns a model pre-trained on the ImageNet dataset from a PyTorch repository.
78
+ Defaults to False.
79
+ """
80
+
81
+ def __init__(self, embedding_dimension=512, pretrained=False):
82
+ super(Resnet34Triplet, self).__init__()
83
+ self.model = resnet34(pretrained=pretrained)
84
+
85
+ # Output embedding
86
+ input_features_fc_layer = self.model.fc.in_features
87
+ self.model.fc = nn.Linear(input_features_fc_layer, embedding_dimension, bias=False)
88
+
89
+ def forward(self, images):
90
+ """Forward pass to output the embedding vector (feature vector) after l2-normalization."""
91
+ embedding = self.model(images)
92
+ # From: https://github.com/timesler/facenet-pytorch/blob/master/models/inception_resnet_v1.py#L301
93
+ embedding = F.normalize(embedding, p=2, dim=1)
94
+
95
+ return embedding
96
+
97
+
98
+ class Resnet50Triplet(nn.Module):
99
+ """Constructs a ResNet-50 model for FaceNet training using triplet loss.
100
+
101
+ Args:
102
+ embedding_dimension (int): Required dimension of the resulting embedding layer that is outputted by the model.
103
+ using triplet loss. Defaults to 512.
104
+ pretrained (bool): If True, returns a model pre-trained on the ImageNet dataset from a PyTorch repository.
105
+ Defaults to False.
106
+ """
107
+
108
+ def __init__(self, embedding_dimension=512, pretrained=False):
109
+ super(Resnet50Triplet, self).__init__()
110
+ self.model = resnet50(pretrained=pretrained)
111
+
112
+ # Output embedding
113
+ input_features_fc_layer = self.model.fc.in_features
114
+ self.model.fc = nn.Linear(input_features_fc_layer, embedding_dimension, bias=False)
115
+
116
+ def forward(self, images):
117
+ """Forward pass to output the embedding vector (feature vector) after l2-normalization."""
118
+ embedding = self.model(images)
119
+ # From: https://github.com/timesler/facenet-pytorch/blob/master/models/inception_resnet_v1.py#L301
120
+ embedding = F.normalize(embedding, p=2, dim=1)
121
+
122
+ return embedding
123
+
124
+
125
+ class Resnet101Triplet(nn.Module):
126
+ """Constructs a ResNet-101 model for FaceNet training using triplet loss.
127
+
128
+ Args:
129
+ embedding_dimension (int): Required dimension of the resulting embedding layer that is outputted by the model.
130
+ using triplet loss. Defaults to 512.
131
+ pretrained (bool): If True, returns a model pre-trained on the ImageNet dataset from a PyTorch repository.
132
+ Defaults to False.
133
+ """
134
+
135
+ def __init__(self, embedding_dimension=512, pretrained=False):
136
+ super(Resnet101Triplet, self).__init__()
137
+ self.model = resnet101(pretrained=pretrained)
138
+
139
+ # Output embedding
140
+ input_features_fc_layer = self.model.fc.in_features
141
+ self.model.fc = nn.Linear(input_features_fc_layer, embedding_dimension, bias=False)
142
+
143
+ def forward(self, images):
144
+ """Forward pass to output the embedding vector (feature vector) after l2-normalization."""
145
+ embedding = self.model(images)
146
+ # From: https://github.com/timesler/facenet-pytorch/blob/master/models/inception_resnet_v1.py#L301
147
+ embedding = F.normalize(embedding, p=2, dim=1)
148
+
149
+ return embedding
150
+
151
+
152
+ class Resnet152Triplet(nn.Module):
153
+ """Constructs a ResNet-152 model for FaceNet training using triplet loss.
154
+
155
+ Args:
156
+ embedding_dimension (int): Required dimension of the resulting embedding layer that is outputted by the model.
157
+ using triplet loss. Defaults to 512.
158
+ pretrained (bool): If True, returns a model pre-trained on the ImageNet dataset from a PyTorch repository.
159
+ Defaults to False.
160
+ """
161
+
162
+ def __init__(self, embedding_dimension=512, pretrained=False):
163
+ super(Resnet152Triplet, self).__init__()
164
+ self.model = resnet152(pretrained=pretrained)
165
+
166
+ # Output embedding
167
+ input_features_fc_layer = self.model.fc.in_features
168
+ self.model.fc = nn.Linear(input_features_fc_layer, embedding_dimension, bias=False)
169
+
170
+ def forward(self, images):
171
+ """Forward pass to output the embedding vector (feature vector) after l2-normalization."""
172
+ embedding = self.model(images)
173
+ # From: https://github.com/timesler/facenet-pytorch/blob/master/models/inception_resnet_v1.py#L301
174
+ embedding = F.normalize(embedding, p=2, dim=1)
175
+
176
+ return embedding
177
+
178
+
179
+ class Resnet34NdTriplet(nn.Module):
180
+ """Constructs a ResNet-34 model for FaceNet training using triplet loss.
181
+
182
+ Args:
183
+ embedding_dimension (int): Required dimension of the resulting embedding layer that is outputted by the model.
184
+ using triplet loss. Defaults to 512.
185
+ pretrained (bool): If True, returns a model pre-trained on the ImageNet dataset from a PyTorch repository.
186
+ Defaults to False.
187
+ """
188
+
189
+ def __init__(self, embedding_dimension=512, pretrained=False):
190
+ super(Resnet34NdTriplet, self).__init__()
191
+ # self.model = resnet34nd(pretrained=False)
192
+ self.model = resnet34(pretrained=pretrained)
193
+
194
+ # Output embedding
195
+ input_features_fc_layer = self.model.fc.in_features
196
+ self.model.fc = ReshapedNdLinear(
197
+ NdLinear((input_features_fc_layer, 1),
198
+ (embedding_dimension, 1),
199
+ bias=False)
200
+ )
201
+
202
+ def forward(self, images):
203
+ """Forward pass to output the embedding vector (feature vector) after l2-normalization."""
204
+ embedding = self.model(images)
205
+ # From: https://github.com/timesler/facenet-pytorch/blob/master/models/inception_resnet_v1.py#L301
206
+ embedding = F.normalize(embedding, p=2, dim=1)
207
+
208
+ return embedding
209
+
210
+
211
+ class Resnet50NdTriplet(PretrainedTripletModel):
212
+ def __init__(self, embedding_dimension=512, pretrained=False):
213
+ super().__init__()
214
+ self.embedding_dimension = embedding_dimension
215
+ self.pretrained = pretrained
216
+ self.model = resnet50(pretrained=pretrained)
217
+ input_features_fc_layer = self.model.fc.in_features
218
+ self.model.fc = ReshapedNdLinear(
219
+ NdLinear((input_features_fc_layer, 1), (embedding_dimension // 16, 16), bias=False)
220
+ )
221
+ def forward(self, images):
222
+ """Forward pass to output the embedding vector (feature vector) after l2-normalization."""
223
+ embedding = self.model(images)
224
+ # From: https://github.com/timesler/facenet-pytorch/blob/master/models/inception_resnet_v1.py#L301
225
+ embedding = F.normalize(embedding, p=2, dim=1)
226
+
227
+ return embedding
models/utils_resnet.py ADDED
@@ -0,0 +1,382 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """This code was imported from the official PyTorch Torchvision GitHub repository for the purposes doing experiments
2
+ with fine-tuned resnet architectures:
3
+ https://github.com/pytorch/vision/blob/master/torchvision/models/resnet.py
4
+ """
5
+
6
+ import torch
7
+ import torch.nn as nn
8
+ from ndlinear import NdLinear
9
+ from .ndlinear_util import ReshapedNdLinear
10
+
11
+ # Replaced 'from .utils import load_state_dict_from_url' with the following:
12
+ try:
13
+ from torch.hub import load_state_dict_from_url
14
+ except ImportError:
15
+ from torch.utils.model_zoo import load_url as load_state_dict_from_url
16
+
17
+
18
+ __all__ = ['ResNet', 'resnet18', 'resnet34', 'resnet34nd', 'resnet50', 'resnet50nd',
19
+ 'resnet101', 'resnet152', 'resnext50_32x4d', 'resnext101_32x8d',
20
+ 'wide_resnet50_2', 'wide_resnet101_2']
21
+
22
+
23
+ model_urls = {
24
+ 'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
25
+ 'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
26
+ 'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
27
+ 'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
28
+ 'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
29
+ 'resnext50_32x4d': 'https://download.pytorch.org/models/resnext50_32x4d-7cdf4587.pth',
30
+ 'resnext101_32x8d': 'https://download.pytorch.org/models/resnext101_32x8d-8ba56ff5.pth',
31
+ 'wide_resnet50_2': 'https://download.pytorch.org/models/wide_resnet50_2-95faca4d.pth',
32
+ 'wide_resnet101_2': 'https://download.pytorch.org/models/wide_resnet101_2-32ee1156.pth',
33
+ }
34
+
35
+
36
+ def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
37
+ """3x3 convolution with padding"""
38
+ return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
39
+ padding=dilation, groups=groups, bias=False, dilation=dilation)
40
+
41
+
42
+ def conv1x1(in_planes, out_planes, stride=1):
43
+ """1x1 convolution"""
44
+ return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
45
+
46
+
47
+ class BasicBlock(nn.Module):
48
+ expansion = 1
49
+
50
+ def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
51
+ base_width=64, dilation=1, norm_layer=None):
52
+ super(BasicBlock, self).__init__()
53
+ if norm_layer is None:
54
+ norm_layer = nn.BatchNorm2d
55
+ if groups != 1 or base_width != 64:
56
+ raise ValueError('BasicBlock only supports groups=1 and base_width=64')
57
+ if dilation > 1:
58
+ raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
59
+ # Both self.conv1 and self.downsample layers downsample the input when stride != 1
60
+ self.conv1 = conv3x3(inplanes, planes, stride)
61
+ self.bn1 = norm_layer(planes)
62
+ self.relu = nn.ReLU(inplace=True)
63
+ self.conv2 = conv3x3(planes, planes)
64
+ self.bn2 = norm_layer(planes)
65
+ self.downsample = downsample
66
+ self.stride = stride
67
+
68
+ def forward(self, x):
69
+ identity = x
70
+
71
+ out = self.conv1(x)
72
+ out = self.bn1(out)
73
+ out = self.relu(out)
74
+
75
+ out = self.conv2(out)
76
+ out = self.bn2(out)
77
+
78
+ if self.downsample is not None:
79
+ identity = self.downsample(x)
80
+
81
+ out += identity
82
+ out = self.relu(out)
83
+
84
+ return out
85
+
86
+
87
+ class Bottleneck(nn.Module):
88
+ # Bottleneck in torchvision places the stride for downsampling at 3x3 convolution(self.conv2)
89
+ # while original implementation places the stride at the first 1x1 convolution(self.conv1)
90
+ # according to "Deep residual learning for image recognition"https://arxiv.org/abs/1512.03385.
91
+ # This variant is also known as ResNet V1.5 and improves accuracy according to
92
+ # https://ngc.nvidia.com/catalog/model-scripts/nvidia:resnet_50_v1_5_for_pytorch.
93
+
94
+ expansion = 4
95
+
96
+ def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
97
+ base_width=64, dilation=1, norm_layer=None):
98
+ super(Bottleneck, self).__init__()
99
+ if norm_layer is None:
100
+ norm_layer = nn.BatchNorm2d
101
+ width = int(planes * (base_width / 64.)) * groups
102
+ # Both self.conv2 and self.downsample layers downsample the input when stride != 1
103
+ self.conv1 = conv1x1(inplanes, width)
104
+ self.bn1 = norm_layer(width)
105
+ self.conv2 = conv3x3(width, width, stride, groups, dilation)
106
+ self.bn2 = norm_layer(width)
107
+ self.conv3 = conv1x1(width, planes * self.expansion)
108
+ self.bn3 = norm_layer(planes * self.expansion)
109
+ self.relu = nn.ReLU(inplace=True)
110
+ self.downsample = downsample
111
+ self.stride = stride
112
+
113
+ def forward(self, x):
114
+ identity = x
115
+
116
+ out = self.conv1(x)
117
+ out = self.bn1(out)
118
+ out = self.relu(out)
119
+
120
+ out = self.conv2(out)
121
+ out = self.bn2(out)
122
+ out = self.relu(out)
123
+
124
+ out = self.conv3(out)
125
+ out = self.bn3(out)
126
+
127
+ if self.downsample is not None:
128
+ identity = self.downsample(x)
129
+
130
+ out += identity
131
+ out = self.relu(out)
132
+
133
+ return out
134
+
135
+
136
+ class ResNet(nn.Module):
137
+
138
+ def __init__(self, block, layers, num_classes=1000, zero_init_residual=False,
139
+ groups=1, width_per_group=64, replace_stride_with_dilation=None,
140
+ norm_layer=None):
141
+ super(ResNet, self).__init__()
142
+ if norm_layer is None:
143
+ norm_layer = nn.BatchNorm2d
144
+ self._norm_layer = norm_layer
145
+
146
+ self.inplanes = 64
147
+ self.dilation = 1
148
+ if replace_stride_with_dilation is None:
149
+ # each element in the tuple indicates if we should replace
150
+ # the 2x2 stride with a dilated convolution instead
151
+ replace_stride_with_dilation = [False, False, False]
152
+ if len(replace_stride_with_dilation) != 3:
153
+ raise ValueError("replace_stride_with_dilation should be None "
154
+ "or a 3-element tuple, got {}".format(replace_stride_with_dilation))
155
+ self.groups = groups
156
+ self.base_width = width_per_group
157
+ self.conv1 = nn.Conv2d(3, self.inplanes, kernel_size=7, stride=2, padding=3,
158
+ bias=False)
159
+ self.bn1 = norm_layer(self.inplanes)
160
+ self.relu = nn.ReLU(inplace=True)
161
+ self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
162
+ self.layer1 = self._make_layer(block, 64, layers[0])
163
+ self.layer2 = self._make_layer(block, 128, layers[1], stride=2,
164
+ dilate=replace_stride_with_dilation[0])
165
+ self.layer3 = self._make_layer(block, 256, layers[2], stride=2,
166
+ dilate=replace_stride_with_dilation[1])
167
+ self.layer4 = self._make_layer(block, 512, layers[3], stride=2,
168
+ dilate=replace_stride_with_dilation[2])
169
+ self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
170
+ self.fc = nn.Linear(512 * block.expansion, num_classes)
171
+
172
+ for m in self.modules():
173
+ if isinstance(m, nn.Conv2d):
174
+ nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
175
+ elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
176
+ nn.init.constant_(m.weight, 1)
177
+ nn.init.constant_(m.bias, 0)
178
+
179
+ # Zero-initialize the last BN in each residual branch,
180
+ # so that the residual branch starts with zeros, and each residual block behaves like an identity.
181
+ # This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
182
+ if zero_init_residual:
183
+ for m in self.modules():
184
+ if isinstance(m, Bottleneck):
185
+ nn.init.constant_(m.bn3.weight, 0)
186
+ elif isinstance(m, BasicBlock):
187
+ nn.init.constant_(m.bn2.weight, 0)
188
+
189
+ def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
190
+ norm_layer = self._norm_layer
191
+ downsample = None
192
+ previous_dilation = self.dilation
193
+ if dilate:
194
+ self.dilation *= stride
195
+ stride = 1
196
+ if stride != 1 or self.inplanes != planes * block.expansion:
197
+ downsample = nn.Sequential(
198
+ conv1x1(self.inplanes, planes * block.expansion, stride),
199
+ norm_layer(planes * block.expansion),
200
+ )
201
+
202
+ layers = []
203
+ layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
204
+ self.base_width, previous_dilation, norm_layer))
205
+ self.inplanes = planes * block.expansion
206
+ for _ in range(1, blocks):
207
+ layers.append(block(self.inplanes, planes, groups=self.groups,
208
+ base_width=self.base_width, dilation=self.dilation,
209
+ norm_layer=norm_layer))
210
+
211
+ return nn.Sequential(*layers)
212
+
213
+ def _forward_impl(self, x):
214
+ # See note [TorchScript super()]
215
+ x = self.conv1(x)
216
+ x = self.bn1(x)
217
+ x = self.relu(x)
218
+ x = self.maxpool(x)
219
+
220
+ x = self.layer1(x)
221
+ x = self.layer2(x)
222
+ x = self.layer3(x)
223
+ x = self.layer4(x)
224
+
225
+ x = self.avgpool(x)
226
+ x = torch.flatten(x, 1)
227
+ x = self.fc(x)
228
+
229
+ return x
230
+
231
+ def forward(self, x):
232
+ return self._forward_impl(x)
233
+
234
+
235
+ def _resnet(arch, block, layers, pretrained, progress, **kwargs):
236
+ model = ResNet(block, layers, **kwargs)
237
+ if pretrained:
238
+ state_dict = load_state_dict_from_url(model_urls[arch],
239
+ progress=progress)
240
+ model.load_state_dict(state_dict)
241
+ return model
242
+
243
+
244
+ def resnet18(pretrained=False, progress=True, **kwargs):
245
+ r"""ResNet-18 model from
246
+ `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
247
+ Args:
248
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
249
+ progress (bool): If True, displays a progress bar of the download to stderr
250
+ """
251
+ return _resnet('resnet18', BasicBlock, [2, 2, 2, 2], pretrained, progress,
252
+ **kwargs)
253
+
254
+
255
+ def resnet34(pretrained=False, progress=True, **kwargs):
256
+ r"""ResNet-34 model from
257
+ `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
258
+ Args:
259
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
260
+ progress (bool): If True, displays a progress bar of the download to stderr
261
+ """
262
+ return _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress,
263
+ **kwargs)
264
+
265
+
266
+ def resnet50(pretrained=False, progress=True, **kwargs):
267
+ r"""ResNet-50 model from
268
+ `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
269
+ Args:
270
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
271
+ progress (bool): If True, displays a progress bar of the download to stderr
272
+ """
273
+ return _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress,
274
+ **kwargs)
275
+
276
+
277
+ def resnet101(pretrained=False, progress=True, **kwargs):
278
+ r"""ResNet-101 model from
279
+ `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
280
+ Args:
281
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
282
+ progress (bool): If True, displays a progress bar of the download to stderr
283
+ """
284
+ return _resnet('resnet101', Bottleneck, [3, 4, 23, 3], pretrained, progress,
285
+ **kwargs)
286
+
287
+
288
+ def resnet152(pretrained=False, progress=True, **kwargs):
289
+ r"""ResNet-152 model from
290
+ `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
291
+ Args:
292
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
293
+ progress (bool): If True, displays a progress bar of the download to stderr
294
+ """
295
+ return _resnet('resnet152', Bottleneck, [3, 8, 36, 3], pretrained, progress,
296
+ **kwargs)
297
+
298
+
299
+ def resnext50_32x4d(pretrained=False, progress=True, **kwargs):
300
+ r"""ResNeXt-50 32x4d model from
301
+ `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
302
+ Args:
303
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
304
+ progress (bool): If True, displays a progress bar of the download to stderr
305
+ """
306
+ kwargs['groups'] = 32
307
+ kwargs['width_per_group'] = 4
308
+ return _resnet('resnext50_32x4d', Bottleneck, [3, 4, 6, 3],
309
+ pretrained, progress, **kwargs)
310
+
311
+
312
+ def resnext101_32x8d(pretrained=False, progress=True, **kwargs):
313
+ r"""ResNeXt-101 32x8d model from
314
+ `"Aggregated Residual Transformation for Deep Neural Networks" <https://arxiv.org/pdf/1611.05431.pdf>`_
315
+ Args:
316
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
317
+ progress (bool): If True, displays a progress bar of the download to stderr
318
+ """
319
+ kwargs['groups'] = 32
320
+ kwargs['width_per_group'] = 8
321
+ return _resnet('resnext101_32x8d', Bottleneck, [3, 4, 23, 3],
322
+ pretrained, progress, **kwargs)
323
+
324
+
325
+ def wide_resnet50_2(pretrained=False, progress=True, **kwargs):
326
+ r"""Wide ResNet-50-2 model from
327
+ `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_
328
+ The model is the same as ResNet except for the bottleneck number of channels
329
+ which is twice larger in every block. The number of channels in outer 1x1
330
+ convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
331
+ channels, and in Wide ResNet-50-2 has 2048-1024-2048.
332
+ Args:
333
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
334
+ progress (bool): If True, displays a progress bar of the download to stderr
335
+ """
336
+ kwargs['width_per_group'] = 64 * 2
337
+ return _resnet('wide_resnet50_2', Bottleneck, [3, 4, 6, 3],
338
+ pretrained, progress, **kwargs)
339
+
340
+
341
+ def wide_resnet101_2(pretrained=False, progress=True, **kwargs):
342
+ r"""Wide ResNet-101-2 model from
343
+ `"Wide Residual Networks" <https://arxiv.org/pdf/1605.07146.pdf>`_
344
+ The model is the same as ResNet except for the bottleneck number of channels
345
+ which is twice larger in every block. The number of channels in outer 1x1
346
+ convolutions is the same, e.g. last block in ResNet-50 has 2048-512-2048
347
+ channels, and in Wide ResNet-50-2 has 2048-1024-2048.
348
+ Args:
349
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
350
+ progress (bool): If True, displays a progress bar of the download to stderr
351
+ """
352
+ kwargs['width_per_group'] = 64 * 2
353
+ return _resnet('wide_resnet101_2', Bottleneck, [3, 4, 23, 3],
354
+ pretrained, progress, **kwargs)
355
+
356
+
357
+ def resnet34nd(pretrained=False, progress=True, **kwargs):
358
+ r"""ResNet-34 model from
359
+ `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
360
+ Args:
361
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
362
+ progress (bool): If True, displays a progress bar of the download to stderr
363
+ """
364
+ _resnet34 = _resnet('resnet34', BasicBlock, [3, 4, 6, 3], pretrained, progress, **kwargs)
365
+ input_dim = _resnet34.fc.in_features
366
+ output_dim = _resnet34.fc.out_features
367
+ _resnet34.fc = ReshapedNdLinear(NdLinear((input_dim, 1), (output_dim // 16, 16)))
368
+ return _resnet34
369
+
370
+
371
+ def resnet50nd(pretrained=False, progress=True, **kwargs):
372
+ r"""ResNet-50 model from
373
+ `"Deep Residual Learning for Image Recognition" <https://arxiv.org/pdf/1512.03385.pdf>`_
374
+ Args:
375
+ pretrained (bool): If True, returns a model pre-trained on ImageNet
376
+ progress (bool): If True, displays a progress bar of the download to stderr
377
+ """
378
+ _resnet50 = _resnet('resnet50', Bottleneck, [3, 4, 6, 3], pretrained, progress, **kwargs)
379
+ input_dim = _resnet50.fc.in_features
380
+ output_dim = _resnet50.fc.out_features
381
+ _resnet50.fc = ReshapedNdLinear(NdLinear((input_dim, 1), (output_dim // 16, 16)))
382
+ return _resnet50
ndlinear.py ADDED
@@ -0,0 +1,82 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ import torch
3
+ import torch.nn as nn
4
+ import torch.optim as optim
5
+
6
+
7
+ class NdLinear(nn.Module):
8
+ def __init__(self, input_dims: tuple, hidden_size: tuple, transform_outer=True, bias=True):
9
+ """
10
+ NdLinear: A PyTorch layer for projecting tensors into multi-space representations.
11
+
12
+ Unlike conventional embedding layers that map into a single vector space, NdLinear
13
+ transforms tensors across a collection of vector spaces, capturing multivariate structure
14
+ and topical information that standard deep learning architectures typically lose.
15
+
16
+ Args:
17
+ input_dims (tuple): Shape of input tensor (excluding batch dimension).
18
+ hidden_size (tuple): Target hidden dimensions after transformation.
19
+ """
20
+ super(NdLinear, self).__init__()
21
+
22
+ if len(input_dims) != len(hidden_size):
23
+ raise Exception("Input shape and hidden shape do not match.")
24
+
25
+ self.input_dims = input_dims
26
+ self.hidden_size = hidden_size
27
+ self.num_layers = len(input_dims) # Must match since dims are equal
28
+ # self.relu = nn.ReLU()
29
+ self.transform_outer = transform_outer
30
+
31
+ # Define transformation layers per dimension
32
+ self.align_layers = nn.ModuleList([
33
+ nn.Linear(input_dims[i], hidden_size[i], bias=bias) for i in range(self.num_layers)
34
+ ])
35
+
36
+ def forward(self, X):
37
+ """
38
+ Forward pass to project input tensor into a new multi-space representation.
39
+ - Incrementally transposes, flattens, applies linear layers, and restores shape.
40
+
41
+ Expected Input Shape: [batch_size, *input_dims]
42
+ Output Shape: [batch_size, *hidden_size]
43
+
44
+ Args:
45
+ X (torch.Tensor): Input tensor with shape [batch_size, *input_dims]
46
+
47
+ Returns:
48
+ torch.Tensor: Output tensor with shape [batch_size, *hidden_size]
49
+ """
50
+ num_transforms = self.num_layers # Number of transformations
51
+
52
+ # Define iteration order
53
+ # transform_indices = range(num_transforms) if transform_outer else reversed(range(num_transforms))
54
+
55
+ for i in range(num_transforms):
56
+ if self.transform_outer:
57
+ layer = self.align_layers[i]
58
+ transpose_dim = i + 1
59
+ else:
60
+ layer = self.align_layers[num_transforms - (i+1)]
61
+ transpose_dim = num_transforms - i
62
+
63
+ # Transpose the selected dimension to the last position
64
+ X = torch.transpose(X, transpose_dim, num_transforms).contiguous()
65
+
66
+ # Store original shape before transformation
67
+ X_size = X.shape[:-1]
68
+
69
+ # Flatten everything except the last dimension
70
+ X = X.view(-1, X.shape[-1])
71
+
72
+ # Apply transformation
73
+ X = layer(X)
74
+
75
+ # Reshape back to the original spatial structure (with new embedding dim)
76
+ X = X.view(*X_size, X.shape[-1])
77
+
78
+ # Transpose the dimension back to its original position
79
+ X = torch.transpose(X, transpose_dim, num_transforms).contiguous()
80
+
81
+ return X
82
+