Upload model_card.md with huggingface_hub
Browse files- model_card.md +202 -0
model_card.md
ADDED
|
@@ -0,0 +1,202 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- vision
|
| 5 |
+
- image-classification
|
| 6 |
+
- clip
|
| 7 |
+
- knowledge-distillation
|
| 8 |
+
- semi-supervised-learning
|
| 9 |
+
- imagenet
|
| 10 |
+
datasets:
|
| 11 |
+
- imagenet-1k
|
| 12 |
+
library_name: pytorch
|
| 13 |
+
pipeline_tag: image-classification
|
| 14 |
+
---
|
| 15 |
+
|
| 16 |
+
# DHO: Simple Few-shot Semi-supervised Knowledge Distillation
|
| 17 |
+
|
| 18 |
+
[](https://arxiv.org/abs/2505.07675v1)
|
| 19 |
+
[](https://paperswithcode.com/sota/semi-supervised-image-classification-on-1?p=simple-semi-supervised-knowledge-distillation)
|
| 20 |
+
[](https://paperswithcode.com/sota/semi-supervised-image-classification-on-2?p=simple-semi-supervised-knowledge-distillation)
|
| 21 |
+
|
| 22 |
+
This repository contains pretrained checkpoints for **DHO (Dual-Head Optimization)**, a simple yet effective approach for semi-supervised knowledge distillation from Vision-Language Models.
|
| 23 |
+
|
| 24 |
+
## Model Description
|
| 25 |
+
|
| 26 |
+
DHO introduces a dual-head optimization strategy that enables efficient knowledge transfer from large Vision-Language Models (e.g., CLIP) to smaller student models using minimal labeled data.
|
| 27 |
+
The method achieves state-of-the-art performance on ImageNet semi-supervised learning benchmarks with only 1% and 10% labeled data.
|
| 28 |
+
|
| 29 |
+
**Paper:** [Simple yet Effective Semi-supervised Knowledge Distillation from Vision-Language Models via Dual-Head Optimization](https://arxiv.org/abs/2505.07675)
|
| 30 |
+
|
| 31 |
+
**Authors:** Seongjae Kang, Dong Bok Lee, Hyungjoon Jang, Sung Ju Hwang
|
| 32 |
+
|
| 33 |
+
## Key Features
|
| 34 |
+
|
| 35 |
+
- ✨ **Dual-head optimization** strategy for semi-supervised distillation
|
| 36 |
+
- 🏆 **State-of-the-art** performance on ImageNet with 1% and 10% labeled data
|
| 37 |
+
- 🔄 Efficient transfer from VLMs (e.g., CLIP) to smaller student models
|
| 38 |
+
- 🧩 Simple, scalable, and easy to integrate into existing pipelines
|
| 39 |
+
|
| 40 |
+
## Available Checkpoints
|
| 41 |
+
|
| 42 |
+
| Checkpoint Name | Student Model | Teacher Model | Labeled Data | Top-1 Acc. | Parameters |
|
| 43 |
+
|:----------------|:--------------|:--------------|:-------------|:-----------|:-----------|
|
| 44 |
+
| `vit_b_1.pt` | ViT-B/16 | ViT-H/14 (DFN5B) | 1% | 81.6% | 86M |
|
| 45 |
+
| `vit_b_10.pt` | ViT-B/16 | ViT-H/14 (DFN5B) | 10% | 82.8% | 86M |
|
| 46 |
+
| `vit_l_1.pt` | ViT-L/14 | ViT-H/14 (DFN5B) | 1% | 84.6% | 304M |
|
| 47 |
+
| `vit_l_10.pt` | ViT-L/14 | ViT-H/14 (DFN5B) | 10% | 85.9% | 304M |
|
| 48 |
+
|
| 49 |
+
## Usage
|
| 50 |
+
|
| 51 |
+
### Loading a Checkpoint
|
| 52 |
+
|
| 53 |
+
```python
|
| 54 |
+
import torch
|
| 55 |
+
import torch.nn as nn
|
| 56 |
+
import torch.nn.functional as F
|
| 57 |
+
import clip
|
| 58 |
+
from huggingface_hub import hf_hub_download
|
| 59 |
+
|
| 60 |
+
# Define the DHO StudentModel architecture with dual heads
|
| 61 |
+
class StudentModel(nn.Module):
|
| 62 |
+
def __init__(self, num_classes=1000, model_name='ViT-B-16'):
|
| 63 |
+
super().__init__()
|
| 64 |
+
# Load CLIP backbone
|
| 65 |
+
clip_model, _ = clip.load(model_name, device='cpu')
|
| 66 |
+
self.backbone = clip_model.float().visual
|
| 67 |
+
|
| 68 |
+
# Feature dimensions per architecture
|
| 69 |
+
in_features = {
|
| 70 |
+
'RN50': 1024,
|
| 71 |
+
'ViT-B-16': 512,
|
| 72 |
+
'ViT-L-14': 768,
|
| 73 |
+
'ViT-L-14-336px': 768
|
| 74 |
+
}[model_name]
|
| 75 |
+
|
| 76 |
+
# Dual-head architecture
|
| 77 |
+
self.ce_head = nn.Linear(in_features, num_classes) # CE branch
|
| 78 |
+
self.kd_head = nn.Linear(in_features, num_classes) # KD branch
|
| 79 |
+
|
| 80 |
+
def forward(self, x):
|
| 81 |
+
features = self.backbone(x)
|
| 82 |
+
ce_out = self.ce_head(features)
|
| 83 |
+
kd_out = self.kd_head(F.normalize(features, dim=1)) * 100
|
| 84 |
+
return ce_out, kd_out
|
| 85 |
+
|
| 86 |
+
# Download and load checkpoint
|
| 87 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 88 |
+
checkpoint_path = hf_hub_download(repo_id="erjui/dho", filename="vit_b_10.pt")
|
| 89 |
+
checkpoint = torch.load(checkpoint_path, map_location=device)
|
| 90 |
+
|
| 91 |
+
# Initialize model
|
| 92 |
+
model = StudentModel(num_classes=1000, model_name='ViT-B-16').to(device)
|
| 93 |
+
|
| 94 |
+
# Handle DDP wrapped state_dict
|
| 95 |
+
state_dict = checkpoint['model_state_dict']
|
| 96 |
+
state_dict = {k.replace('module.', ''): v for k, v in state_dict.items()}
|
| 97 |
+
model.load_state_dict(state_dict)
|
| 98 |
+
|
| 99 |
+
# Get optimal inference parameters
|
| 100 |
+
alpha = checkpoint['alpha'] # Weight for CE head
|
| 101 |
+
beta = checkpoint['beta'] # Temperature for KD head
|
| 102 |
+
model.eval()
|
| 103 |
+
|
| 104 |
+
# Inference example
|
| 105 |
+
from PIL import Image
|
| 106 |
+
import torchvision.transforms as transforms
|
| 107 |
+
|
| 108 |
+
# CLIP preprocessing
|
| 109 |
+
preprocess = transforms.Compose([
|
| 110 |
+
transforms.Resize(224),
|
| 111 |
+
transforms.CenterCrop(224),
|
| 112 |
+
transforms.ToTensor(),
|
| 113 |
+
transforms.Normalize(mean=(0.48145466, 0.4578275, 0.40821073),
|
| 114 |
+
std=(0.26862954, 0.26130258, 0.27577711))
|
| 115 |
+
])
|
| 116 |
+
|
| 117 |
+
image = preprocess(Image.open("path/to/image.jpg")).unsqueeze(0).to(device)
|
| 118 |
+
with torch.no_grad():
|
| 119 |
+
ce_logits, kd_logits = model(image)
|
| 120 |
+
|
| 121 |
+
# Combine predictions using saved parameters
|
| 122 |
+
probs_ce = F.softmax(ce_logits, dim=1)
|
| 123 |
+
probs_kd = F.softmax(kd_logits / beta, dim=1)
|
| 124 |
+
probs = alpha * probs_ce + (1 - alpha) * probs_kd
|
| 125 |
+
|
| 126 |
+
predicted_class = probs.argmax(dim=1)
|
| 127 |
+
print(f"Predicted class: {predicted_class.item()}")
|
| 128 |
+
```
|
| 129 |
+
|
| 130 |
+
**Important Notes:**
|
| 131 |
+
- DHO checkpoints contain: `model_state_dict`, `epoch`, `acc`, `alpha`, `beta`
|
| 132 |
+
- The model has a **dual-head architecture** (CE head + KD head)
|
| 133 |
+
- Use the saved `alpha` and `beta` parameters for optimal inference
|
| 134 |
+
- For ViT-L checkpoints, change `model_name='ViT-L-14'` and use image size 224 (or 336 for ViT-L-14-336px)
|
| 135 |
+
|
| 136 |
+
### Training Your Own Model
|
| 137 |
+
|
| 138 |
+
To train your own DHO model, please visit the [official GitHub repository](https://github.com/yourusername/DHO) for detailed instructions and training scripts.
|
| 139 |
+
|
| 140 |
+
**Example training command:**
|
| 141 |
+
```bash
|
| 142 |
+
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 torchrun --nproc_per_node=8 --master_port=29500 train_imgnet_semi.py \
|
| 143 |
+
--teacher_model "apple/DFN5B-CLIP-ViT-H-14-378" \
|
| 144 |
+
--student_model "ViT-B-16" \
|
| 145 |
+
--lr 5e-5 \
|
| 146 |
+
--train_epoch 32 \
|
| 147 |
+
--batch_size 256 \
|
| 148 |
+
--percent 10.0 \
|
| 149 |
+
| tee ./logs/imagenet/imgnet_lowshot.log
|
| 150 |
+
```
|
| 151 |
+
|
| 152 |
+
## Model Architecture
|
| 153 |
+
|
| 154 |
+
The DHO student model consists of:
|
| 155 |
+
- **Backbone:** CLIP Vision Transformer (ViT-B/16 or ViT-L/14)
|
| 156 |
+
- **Two parallel heads:**
|
| 157 |
+
- **CE Head:** Optimized with cross-entropy loss on labeled data
|
| 158 |
+
- **KD Head:** Optimized with knowledge distillation loss from teacher predictions
|
| 159 |
+
|
| 160 |
+
During inference, predictions from both heads are combined using learned weighting parameters (alpha, beta).
|
| 161 |
+
|
| 162 |
+
## Performance
|
| 163 |
+
|
| 164 |
+
### ImageNet Semi-supervised Learning
|
| 165 |
+
|
| 166 |
+
| Student | Teacher | Labeled Data | Top-1 Accuracy |
|
| 167 |
+
|:--------|:--------|:-------------|:---------------|
|
| 168 |
+
| ViT-B/16 | ViT-H/14 | 1% | **81.6%** |
|
| 169 |
+
| ViT-B/16 | ViT-H/14 | 10% | **82.8%** |
|
| 170 |
+
| ViT-L/14 | ViT-H/14 | 1% | **84.6%** |
|
| 171 |
+
| ViT-L/14 | ViT-H/14 | 10% | **85.9%** |
|
| 172 |
+
|
| 173 |
+
These results establish new state-of-the-art benchmarks for semi-supervised learning on ImageNet-1K.
|
| 174 |
+
|
| 175 |
+
## Citation
|
| 176 |
+
|
| 177 |
+
If you use these models in your research, please cite:
|
| 178 |
+
|
| 179 |
+
```bibtex
|
| 180 |
+
@article{kang2025simple,
|
| 181 |
+
title={Simple yet Effective Semi-supervised Knowledge Distillation from Vision-Language Models via Dual-Head Optimization},
|
| 182 |
+
author={Kang, Seongjae and Lee, Dong Bok and Jang, Hyungjoon and Hwang, Sung Ju},
|
| 183 |
+
journal={arXiv preprint arXiv:2505.07675},
|
| 184 |
+
year={2025}
|
| 185 |
+
}
|
| 186 |
+
```
|
| 187 |
+
|
| 188 |
+
## License
|
| 189 |
+
|
| 190 |
+
This project is licensed under the Apache License 2.0 - see the LICENSE file for details.
|
| 191 |
+
|
| 192 |
+
## Acknowledgments
|
| 193 |
+
|
| 194 |
+
We appreciate the open-source implementations from:
|
| 195 |
+
- [Tip-Adapter](https://github.com/gaopengcuhk/Tip-Adapter)
|
| 196 |
+
- [CLIP](https://github.com/openai/CLIP)
|
| 197 |
+
- [OpenCLIP](https://github.com/mlfoundations/open_clip)
|
| 198 |
+
|
| 199 |
+
## Contact
|
| 200 |
+
|
| 201 |
+
For questions or issues, please open an issue on the [GitHub repository](https://github.com/yourusername/DHO) or contact the authors.
|
| 202 |
+
|