File size: 12,147 Bytes
016900a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
import torch
import torch.nn.functional as F
import numpy as np
import esm
from tqdm import tqdm
import os
from datetime import datetime

CANONICAL_AAS = list("ACDEFGHIKLMNPQRSTVWY")

class EmbeddingToSequenceConverter:
    """
    Decode contextual ESM2 hidden states to amino-acid sequences via the model's LM head.
    Accepts [L, 1280] or [B, L, 1280] tensors (L≈50 in your pipeline).
    """

    def __init__(self, device="cuda"):
        self.device = torch.device(device if torch.cuda.is_available() else "cpu")
        print("Loading ESM model for sequence decoding...")
        self.model, self.alphabet = esm.pretrained.esm2_t33_650M_UR50D()
        self.model.eval().to(self.device)
        self.aa_list = CANONICAL_AAS
        self.aa_token_ids = torch.tensor(
            [self.alphabet.get_idx(a) for a in self.aa_list],
            device=self.device, dtype=torch.long
        )
        print("✓ ESM model loaded for sequence decoding")
    
    @torch.inference_mode()
    def _logits_from_hidden(self, hidden):
        # hidden: [L, D] or [B, L, D]; project exactly as ESM-2 does (LayerNorm → LM head)
        if hidden.dim() == 2:
            hidden = hidden.unsqueeze(0)
        hidden = hidden.to(self.device)
        # match model dtype to avoid dtype mismatches under autocast
        hidden = hidden.to(self.model.lm_head.weight.dtype)
        if hasattr(self.model, "emb_layer_norm_after"):
            hidden = self.model.emb_layer_norm_after(hidden)
        logits_full = self.model.lm_head(hidden)                        # [B, L, |V|]
        logits_20  = logits_full.index_select(-1, self.aa_token_ids)    # [B, L, 20]
        return logits_20

    @torch.inference_mode()
    def embedding_to_sequence(self, embedding, method="diverse", temperature=0.8, top_p=0.9, top_k=0, seed=None, return_conf=False):
        logits = self._logits_from_hidden(embedding)                    # [1, L, 20]
        if method in ("nearest", "nearest_neighbor"):
            idx = logits.argmax(-1)[0]
            probs = logits.softmax(-1)[0]
        else:
            if seed is not None:
                torch.manual_seed(seed)
            if temperature and temperature > 0:
                logits = logits / temperature
            probs = logits.softmax(-1)[0]                               # [L, 20]
            V = probs.size(-1)
            if top_k and top_k < V:
                kth = torch.topk(probs, top_k, dim=-1).values[..., -1:]
                probs = torch.where(probs >= kth, probs, torch.zeros_like(probs))
                probs = probs / probs.sum(-1, keepdim=True).clamp_min(1e-12)
            if top_p and 0 < top_p < 1:
                sorted_probs, sorted_idx = torch.sort(probs, descending=True, dim=-1)
                cum = sorted_probs.cumsum(-1)
                mask = cum > top_p
                mask[..., 0] = False
                sorted_probs = sorted_probs.masked_fill(mask, 0)
                sorted_probs = sorted_probs / sorted_probs.sum(-1, keepdim=True).clamp_min(1e-12)
                samples = torch.multinomial(sorted_probs, 1).squeeze(-1)
                idx = sorted_idx.gather(-1, samples.unsqueeze(-1)).squeeze(-1)
            else:
                idx = torch.multinomial(probs, 1).squeeze(-1)
        seq = "".join(self.aa_list[i] for i in idx.tolist())
        if return_conf:
            conf = probs.max(-1).values.mean().item()   # avg per-pos max prob
            return seq, conf
        return seq

    @torch.inference_mode()
    def batch_embedding_to_sequences(self, embeddings, method="diverse", temperature=0.8, top_p=0.9, top_k=0, seed=None, return_conf=False, max_tokens=100_000):
        if embeddings.dim() == 2:
            return [self.embedding_to_sequence(embeddings, method, temperature, top_p, top_k, seed, return_conf)]
        B, L, V = embeddings.shape
        if seed is not None:
            torch.manual_seed(seed)
        # Batched logits to avoid OOM
        logits = []
        start = 0
        while start < B:
            chunk_bs = max(1, min(B - start, max_tokens // L))
            logits.append(self._logits_from_hidden(embeddings[start:start+chunk_bs]))
            start += chunk_bs
        logits = torch.cat(logits, dim=0)                              # [B, L, 20]
        if method in ("nearest", "nearest_neighbor"):
            idx = logits.argmax(-1)                                     # [B, L]
            probs = logits.softmax(-1)
        else:
            if temperature and temperature > 0:
                logits = logits / temperature
            probs = logits.softmax(-1)                                  # [B, L, 20]
            B, L, V = probs.shape
            if top_k and top_k < V:
                kth = torch.topk(probs, top_k, dim=-1).values[..., -1:].expand_as(probs)
                probs = torch.where(probs >= kth, probs, torch.zeros_like(probs))
                probs = probs / probs.sum(-1, keepdim=True).clamp_min(1e-12)
            if top_p and 0 < top_p < 1:
                flat = probs.view(-1, V)
                sorted_probs, sorted_idx = torch.sort(flat, descending=True, dim=-1)
                cum = sorted_probs.cumsum(-1)
                mask = cum > top_p
                mask[:, 0] = False
                sorted_probs = sorted_probs.masked_fill(mask, 0)
                sorted_probs = sorted_probs / sorted_probs.sum(-1, keepdim=True).clamp_min(1e-12)
                samples = torch.multinomial(sorted_probs, 1)            # [B*L, 1]
                idx = sorted_idx.gather(-1, samples).view(B, L)         # [B, L]
            else:
                idx = torch.multinomial(probs.view(-1, V), 1).view(B, L)
        seqs = ["".join(self.aa_list[i] for i in row.tolist()) for row in idx]
        if return_conf:
            conf = probs.max(-1).values.mean(-1).tolist()               # [B]
            return list(zip(seqs, conf))
        return seqs
    def validate_sequence(self, s):
        return all(a in set(self.aa_list) for a in s)
    
    def filter_valid_sequences(self, sequences):
        valid = []
        for seq in sequences:
            if self.validate_sequence(seq):
                valid.append(seq)
            else:
                print(f"Warning: Invalid sequence found: {seq}")
        return valid

def main():
    """
    Decode all CFG-generated peptide embeddings to sequences and analyze distribution.
    Uses the best trained model (loss: 0.017183, step: 53).
    """
    print("=== CFG-Generated Peptide Sequence Decoder (Best Model) ===")
    
    # Initialize converter
    converter = EmbeddingToSequenceConverter()
    
    # Get today's date for filename
    today = datetime.now().strftime('%Y%m%d')
    
    # Load all CFG-generated embeddings (using best model)
    cfg_files = {
        'No CFG (0.0)': f'/data2/edwardsun/generated_samples/generated_amps_best_model_no_cfg_{today}.pt',
        'Weak CFG (3.0)': f'/data2/edwardsun/generated_samples/generated_amps_best_model_weak_cfg_{today}.pt', 
        'Strong CFG (7.5)': f'/data2/edwardsun/generated_samples/generated_amps_best_model_strong_cfg_{today}.pt',
        'Very Strong CFG (15.0)': f'/data2/edwardsun/generated_samples/generated_amps_best_model_very_strong_cfg_{today}.pt'
    }
    
    all_results = {}
    
    for cfg_name, file_path in cfg_files.items():
        print(f"\n{'='*50}")
        print(f"Processing {cfg_name}...")
        print(f"Loading: {file_path}")
        
        try:
            # Load embeddings
            embeddings = torch.load(file_path, map_location='cpu')
            print(f"✓ Loaded {len(embeddings)} embeddings, shape: {embeddings.shape}")
            
            # Decode to sequences using diverse method
            print(f"Decoding sequences...")
            sequences = converter.batch_embedding_to_sequences(embeddings, method='diverse', temperature=0.5)
            
            # Filter valid sequences
            valid_sequences = converter.filter_valid_sequences(sequences)
            print(f"✓ Valid sequences: {len(valid_sequences)}/{len(sequences)}")
            
            # Store results
            all_results[cfg_name] = {
                'sequences': valid_sequences,
                'total': len(sequences),
                'valid': len(valid_sequences)
            }
            
            # Show sample sequences
            print(f"\nSample sequences ({cfg_name}):")
            for i, seq in enumerate(valid_sequences[:5]):
                print(f"  {i+1}: {seq}")
            
        except Exception as e:
            print(f"❌ Error processing {file_path}: {e}")
            all_results[cfg_name] = {'sequences': [], 'total': 0, 'valid': 0}
    
    # Analysis and comparison
    print(f"\n{'='*60}")
    print("CFG ANALYSIS SUMMARY")
    print(f"{'='*60}")
    
    for cfg_name, results in all_results.items():
        sequences = results['sequences']
        if sequences:
            # Calculate sequence statistics
            lengths = [len(seq) for seq in sequences]
            avg_length = np.mean(lengths)
            std_length = np.std(lengths)
            
            # Calculate amino acid composition
            all_aas = ''.join(sequences)
            aa_counts = {}
            for aa in 'ACDEFGHIKLMNPQRSTVWY':
                aa_counts[aa] = all_aas.count(aa)
            
            # Calculate diversity (unique sequences)
            unique_sequences = len(set(sequences))
            diversity_ratio = unique_sequences / len(sequences)
            
            print(f"\n{cfg_name}:")
            print(f"  Total sequences: {results['total']}")
            print(f"  Valid sequences: {results['valid']}")
            print(f"  Unique sequences: {unique_sequences}")
            print(f"  Diversity ratio: {diversity_ratio:.3f}")
            print(f"  Avg length: {avg_length:.1f} ± {std_length:.1f}")
            print(f"  Length range: {min(lengths)}-{max(lengths)}")
            
            # Show top amino acids
            sorted_aas = sorted(aa_counts.items(), key=lambda x: x[1], reverse=True)
            print(f"  Top 5 AAs: {', '.join([f'{aa}({count})' for aa, count in sorted_aas[:5]])}")
            
            # Create output directory if it doesn't exist
            output_dir = '/data2/edwardsun/decoded_sequences'
            os.makedirs(output_dir, exist_ok=True)
            
            # Save sequences to file with date
            output_file = os.path.join(output_dir, f"decoded_sequences_{cfg_name.lower().replace(' ', '_').replace('(', '').replace(')', '').replace('.', '')}_{today}.txt")
            with open(output_file, 'w') as f:
                f.write(f"# Decoded sequences from {cfg_name}\n")
                f.write(f"# Total: {results['total']}, Valid: {results['valid']}, Unique: {unique_sequences}\n")
                f.write(f"# Generated from best model (loss: 0.017183, step: 53)\n\n")
                for i, seq in enumerate(sequences):
                    f.write(f"seq_{i+1:03d}\t{seq}\n")
            print(f"  ✓ Saved to: {output_file}")
    
    # Overall comparison
    print(f"\n{'='*60}")
    print("OVERALL COMPARISON")
    print(f"{'='*60}")
    
    cfg_names = list(all_results.keys())
    valid_counts = [all_results[name]['valid'] for name in cfg_names]
    unique_counts = [len(set(all_results[name]['sequences'])) for name in cfg_names]
    
    print(f"Valid sequences: {dict(zip(cfg_names, valid_counts))}")
    print(f"Unique sequences: {dict(zip(cfg_names, unique_counts))}")
    
    # Find most diverse and most similar
    if all(valid_counts):
        diversity_ratios = [unique_counts[i]/valid_counts[i] for i in range(len(valid_counts))]
        most_diverse = cfg_names[diversity_ratios.index(max(diversity_ratios))]
        least_diverse = cfg_names[diversity_ratios.index(min(diversity_ratios))]
        
        print(f"\nMost diverse: {most_diverse} (ratio: {max(diversity_ratios):.3f})")
        print(f"Least diverse: {least_diverse} (ratio: {min(diversity_ratios):.3f})")
    
    print(f"\n✓ Decoding complete! Check the output files for detailed sequences.")

if __name__ == "__main__":
    main()