FlowFinal / src /final_sequence_decoder.py
esunAI's picture
Add final_sequence_decoder.py
016900a verified
raw
history blame
12.1 kB
import torch
import torch.nn.functional as F
import numpy as np
import esm
from tqdm import tqdm
import os
from datetime import datetime
CANONICAL_AAS = list("ACDEFGHIKLMNPQRSTVWY")
class EmbeddingToSequenceConverter:
"""
Decode contextual ESM2 hidden states to amino-acid sequences via the model's LM head.
Accepts [L, 1280] or [B, L, 1280] tensors (L≈50 in your pipeline).
"""
def __init__(self, device="cuda"):
self.device = torch.device(device if torch.cuda.is_available() else "cpu")
print("Loading ESM model for sequence decoding...")
self.model, self.alphabet = esm.pretrained.esm2_t33_650M_UR50D()
self.model.eval().to(self.device)
self.aa_list = CANONICAL_AAS
self.aa_token_ids = torch.tensor(
[self.alphabet.get_idx(a) for a in self.aa_list],
device=self.device, dtype=torch.long
)
print("✓ ESM model loaded for sequence decoding")
@torch.inference_mode()
def _logits_from_hidden(self, hidden):
# hidden: [L, D] or [B, L, D]; project exactly as ESM-2 does (LayerNorm → LM head)
if hidden.dim() == 2:
hidden = hidden.unsqueeze(0)
hidden = hidden.to(self.device)
# match model dtype to avoid dtype mismatches under autocast
hidden = hidden.to(self.model.lm_head.weight.dtype)
if hasattr(self.model, "emb_layer_norm_after"):
hidden = self.model.emb_layer_norm_after(hidden)
logits_full = self.model.lm_head(hidden) # [B, L, |V|]
logits_20 = logits_full.index_select(-1, self.aa_token_ids) # [B, L, 20]
return logits_20
@torch.inference_mode()
def embedding_to_sequence(self, embedding, method="diverse", temperature=0.8, top_p=0.9, top_k=0, seed=None, return_conf=False):
logits = self._logits_from_hidden(embedding) # [1, L, 20]
if method in ("nearest", "nearest_neighbor"):
idx = logits.argmax(-1)[0]
probs = logits.softmax(-1)[0]
else:
if seed is not None:
torch.manual_seed(seed)
if temperature and temperature > 0:
logits = logits / temperature
probs = logits.softmax(-1)[0] # [L, 20]
V = probs.size(-1)
if top_k and top_k < V:
kth = torch.topk(probs, top_k, dim=-1).values[..., -1:]
probs = torch.where(probs >= kth, probs, torch.zeros_like(probs))
probs = probs / probs.sum(-1, keepdim=True).clamp_min(1e-12)
if top_p and 0 < top_p < 1:
sorted_probs, sorted_idx = torch.sort(probs, descending=True, dim=-1)
cum = sorted_probs.cumsum(-1)
mask = cum > top_p
mask[..., 0] = False
sorted_probs = sorted_probs.masked_fill(mask, 0)
sorted_probs = sorted_probs / sorted_probs.sum(-1, keepdim=True).clamp_min(1e-12)
samples = torch.multinomial(sorted_probs, 1).squeeze(-1)
idx = sorted_idx.gather(-1, samples.unsqueeze(-1)).squeeze(-1)
else:
idx = torch.multinomial(probs, 1).squeeze(-1)
seq = "".join(self.aa_list[i] for i in idx.tolist())
if return_conf:
conf = probs.max(-1).values.mean().item() # avg per-pos max prob
return seq, conf
return seq
@torch.inference_mode()
def batch_embedding_to_sequences(self, embeddings, method="diverse", temperature=0.8, top_p=0.9, top_k=0, seed=None, return_conf=False, max_tokens=100_000):
if embeddings.dim() == 2:
return [self.embedding_to_sequence(embeddings, method, temperature, top_p, top_k, seed, return_conf)]
B, L, V = embeddings.shape
if seed is not None:
torch.manual_seed(seed)
# Batched logits to avoid OOM
logits = []
start = 0
while start < B:
chunk_bs = max(1, min(B - start, max_tokens // L))
logits.append(self._logits_from_hidden(embeddings[start:start+chunk_bs]))
start += chunk_bs
logits = torch.cat(logits, dim=0) # [B, L, 20]
if method in ("nearest", "nearest_neighbor"):
idx = logits.argmax(-1) # [B, L]
probs = logits.softmax(-1)
else:
if temperature and temperature > 0:
logits = logits / temperature
probs = logits.softmax(-1) # [B, L, 20]
B, L, V = probs.shape
if top_k and top_k < V:
kth = torch.topk(probs, top_k, dim=-1).values[..., -1:].expand_as(probs)
probs = torch.where(probs >= kth, probs, torch.zeros_like(probs))
probs = probs / probs.sum(-1, keepdim=True).clamp_min(1e-12)
if top_p and 0 < top_p < 1:
flat = probs.view(-1, V)
sorted_probs, sorted_idx = torch.sort(flat, descending=True, dim=-1)
cum = sorted_probs.cumsum(-1)
mask = cum > top_p
mask[:, 0] = False
sorted_probs = sorted_probs.masked_fill(mask, 0)
sorted_probs = sorted_probs / sorted_probs.sum(-1, keepdim=True).clamp_min(1e-12)
samples = torch.multinomial(sorted_probs, 1) # [B*L, 1]
idx = sorted_idx.gather(-1, samples).view(B, L) # [B, L]
else:
idx = torch.multinomial(probs.view(-1, V), 1).view(B, L)
seqs = ["".join(self.aa_list[i] for i in row.tolist()) for row in idx]
if return_conf:
conf = probs.max(-1).values.mean(-1).tolist() # [B]
return list(zip(seqs, conf))
return seqs
def validate_sequence(self, s):
return all(a in set(self.aa_list) for a in s)
def filter_valid_sequences(self, sequences):
valid = []
for seq in sequences:
if self.validate_sequence(seq):
valid.append(seq)
else:
print(f"Warning: Invalid sequence found: {seq}")
return valid
def main():
"""
Decode all CFG-generated peptide embeddings to sequences and analyze distribution.
Uses the best trained model (loss: 0.017183, step: 53).
"""
print("=== CFG-Generated Peptide Sequence Decoder (Best Model) ===")
# Initialize converter
converter = EmbeddingToSequenceConverter()
# Get today's date for filename
today = datetime.now().strftime('%Y%m%d')
# Load all CFG-generated embeddings (using best model)
cfg_files = {
'No CFG (0.0)': f'/data2/edwardsun/generated_samples/generated_amps_best_model_no_cfg_{today}.pt',
'Weak CFG (3.0)': f'/data2/edwardsun/generated_samples/generated_amps_best_model_weak_cfg_{today}.pt',
'Strong CFG (7.5)': f'/data2/edwardsun/generated_samples/generated_amps_best_model_strong_cfg_{today}.pt',
'Very Strong CFG (15.0)': f'/data2/edwardsun/generated_samples/generated_amps_best_model_very_strong_cfg_{today}.pt'
}
all_results = {}
for cfg_name, file_path in cfg_files.items():
print(f"\n{'='*50}")
print(f"Processing {cfg_name}...")
print(f"Loading: {file_path}")
try:
# Load embeddings
embeddings = torch.load(file_path, map_location='cpu')
print(f"✓ Loaded {len(embeddings)} embeddings, shape: {embeddings.shape}")
# Decode to sequences using diverse method
print(f"Decoding sequences...")
sequences = converter.batch_embedding_to_sequences(embeddings, method='diverse', temperature=0.5)
# Filter valid sequences
valid_sequences = converter.filter_valid_sequences(sequences)
print(f"✓ Valid sequences: {len(valid_sequences)}/{len(sequences)}")
# Store results
all_results[cfg_name] = {
'sequences': valid_sequences,
'total': len(sequences),
'valid': len(valid_sequences)
}
# Show sample sequences
print(f"\nSample sequences ({cfg_name}):")
for i, seq in enumerate(valid_sequences[:5]):
print(f" {i+1}: {seq}")
except Exception as e:
print(f"❌ Error processing {file_path}: {e}")
all_results[cfg_name] = {'sequences': [], 'total': 0, 'valid': 0}
# Analysis and comparison
print(f"\n{'='*60}")
print("CFG ANALYSIS SUMMARY")
print(f"{'='*60}")
for cfg_name, results in all_results.items():
sequences = results['sequences']
if sequences:
# Calculate sequence statistics
lengths = [len(seq) for seq in sequences]
avg_length = np.mean(lengths)
std_length = np.std(lengths)
# Calculate amino acid composition
all_aas = ''.join(sequences)
aa_counts = {}
for aa in 'ACDEFGHIKLMNPQRSTVWY':
aa_counts[aa] = all_aas.count(aa)
# Calculate diversity (unique sequences)
unique_sequences = len(set(sequences))
diversity_ratio = unique_sequences / len(sequences)
print(f"\n{cfg_name}:")
print(f" Total sequences: {results['total']}")
print(f" Valid sequences: {results['valid']}")
print(f" Unique sequences: {unique_sequences}")
print(f" Diversity ratio: {diversity_ratio:.3f}")
print(f" Avg length: {avg_length:.1f} ± {std_length:.1f}")
print(f" Length range: {min(lengths)}-{max(lengths)}")
# Show top amino acids
sorted_aas = sorted(aa_counts.items(), key=lambda x: x[1], reverse=True)
print(f" Top 5 AAs: {', '.join([f'{aa}({count})' for aa, count in sorted_aas[:5]])}")
# Create output directory if it doesn't exist
output_dir = '/data2/edwardsun/decoded_sequences'
os.makedirs(output_dir, exist_ok=True)
# Save sequences to file with date
output_file = os.path.join(output_dir, f"decoded_sequences_{cfg_name.lower().replace(' ', '_').replace('(', '').replace(')', '').replace('.', '')}_{today}.txt")
with open(output_file, 'w') as f:
f.write(f"# Decoded sequences from {cfg_name}\n")
f.write(f"# Total: {results['total']}, Valid: {results['valid']}, Unique: {unique_sequences}\n")
f.write(f"# Generated from best model (loss: 0.017183, step: 53)\n\n")
for i, seq in enumerate(sequences):
f.write(f"seq_{i+1:03d}\t{seq}\n")
print(f" ✓ Saved to: {output_file}")
# Overall comparison
print(f"\n{'='*60}")
print("OVERALL COMPARISON")
print(f"{'='*60}")
cfg_names = list(all_results.keys())
valid_counts = [all_results[name]['valid'] for name in cfg_names]
unique_counts = [len(set(all_results[name]['sequences'])) for name in cfg_names]
print(f"Valid sequences: {dict(zip(cfg_names, valid_counts))}")
print(f"Unique sequences: {dict(zip(cfg_names, unique_counts))}")
# Find most diverse and most similar
if all(valid_counts):
diversity_ratios = [unique_counts[i]/valid_counts[i] for i in range(len(valid_counts))]
most_diverse = cfg_names[diversity_ratios.index(max(diversity_ratios))]
least_diverse = cfg_names[diversity_ratios.index(min(diversity_ratios))]
print(f"\nMost diverse: {most_diverse} (ratio: {max(diversity_ratios):.3f})")
print(f"Least diverse: {least_diverse} (ratio: {min(diversity_ratios):.3f})")
print(f"\n✓ Decoding complete! Check the output files for detailed sequences.")
if __name__ == "__main__":
main()