FlowFinal / training_logs /training_output_h100_max.log
esunAI's picture
Add training_output_h100_max.log
620d0e4 verified
nohup: ignoring input
/data2/edwardsun/flow_home/amp_flow_training_single_gpu_full_data.py:70: FutureWarning: `torch.cuda.amp.GradScaler(args...)` is deprecated. Please use `torch.amp.GradScaler('cuda', args...)` instead.
self.scaler = GradScaler()
/data2/edwardsun/flow_home/amp_flow_training_single_gpu_full_data.py:116: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
self.embeddings = torch.load(combined_path, map_location=self.device)
/data2/edwardsun/flow_home/amp_flow_training_single_gpu_full_data.py:180: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
self.compressor.load_state_dict(torch.load('final_compressor_model.pth', map_location=self.device))
/data2/edwardsun/flow_home/amp_flow_training_single_gpu_full_data.py:181: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
self.decompressor.load_state_dict(torch.load('final_decompressor_model.pth', map_location=self.device))
/data2/edwardsun/flow_home/cfg_dataset.py:253: FutureWarning: You are using `torch.load` with `weights_only=False` (the current default value), which uses the default pickle module implicitly. It is possible to construct malicious pickle data which will execute arbitrary code during unpickling (See https://github.com/pytorch/pytorch/blob/main/SECURITY.md#untrusted-models for more details). In a future release, the default value for `weights_only` will be flipped to `True`. This limits the functions that could be executed during unpickling. Arbitrary objects will no longer be allowed to be loaded via this mode unless they are explicitly allowlisted by the user via `torch.serialization.add_safe_globals`. We recommend you start setting `weights_only=True` for any use case where you don't have full control of the loaded file. Please open an issue on GitHub for any issues related to this experimental feature.
self.embeddings = torch.load(combined_path, map_location='cpu')
Starting optimized training with batch_size=384, epochs=2000
Using GPU 0 for optimized H100 training
Mixed precision: True
Batch size: 384
Target epochs: 2000
Learning rate: 0.0012 -> 0.0006
βœ“ Mixed precision training enabled (BF16)
Loading ALL AMP embeddings from /data2/edwardsun/flow_project/peptide_embeddings/...
Loading combined embeddings from /data2/edwardsun/flow_project/peptide_embeddings/all_peptide_embeddings.pt...
βœ“ Loaded ALL embeddings: torch.Size([17968, 50, 1280])
Computing preprocessing statistics...
βœ“ Statistics computed and saved:
Total embeddings: 17,968
Mean: -0.0005 Β± 0.0897
Std: 0.0869 Β± 0.1168
Range: [-9.1738, 3.2894]
Initializing models...
βœ“ Model compiled with torch.compile for speedup
βœ“ Models initialized:
Compressor parameters: 78,817,360
Decompressor parameters: 39,458,720
Flow model parameters: 50,779,584
Initializing datasets with FULL data...
Loading AMP embeddings from /data2/edwardsun/flow_project/peptide_embeddings/...
Loading combined embeddings from /data2/edwardsun/flow_project/peptide_embeddings/all_peptide_embeddings.pt (FULL DATA)...
βœ“ Loaded ALL embeddings: torch.Size([17968, 50, 1280])
Loading CFG data from FASTA: /home/edwardsun/flow/combined_final.fasta...
Parsing FASTA file: /home/edwardsun/flow/combined_final.fasta
Label assignment: >AP = AMP (0), >sp = Non-AMP (1)
βœ“ Parsed 6983 valid sequences from FASTA
AMP sequences: 3306
Non-AMP sequences: 3677
Masked for CFG: 698
Loaded 6983 CFG sequences
Label distribution: [3306 3677]
Masked 698 labels for CFG training
Aligning AMP embeddings with CFG data...
Aligned 6983 samples
CFG Flow Dataset initialized:
AMP embeddings: torch.Size([17968, 50, 1280])
CFG labels: 6983
Aligned samples: 6983
βœ“ Dataset initialized with FULL data:
Total samples: 6,983
Batch size: 384
Batches per epoch: 19
Total training steps: 38,000
Validation every: 10,000 steps
Initializing optimizer and scheduler...
βœ“ Optimizer initialized:
Base LR: 0.0012
Min LR: 0.0006
Warmup steps: 5000
Weight decay: 0.01
Gradient clip norm: 1.0
βœ“ Optimized Single GPU training setup complete with FULL DATA!
πŸš€ Starting Optimized Single GPU Flow Matching Training with FULL DATA
GPU: 0
Total iterations: 2000
Batch size: 384
Total samples: 6,983
Mixed precision: True
Estimated time: ~8-10 hours (overnight training with ALL data)
============================================================
Training Flow Model: 0%| | 0/2000 [00:00<?, ?it/s]/data2/edwardsun/flow_home/amp_flow_training_single_gpu_full_data.py:392: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
with autocast(dtype=torch.bfloat16):
/data2/edwardsun/flow_home/amp_flow_training_single_gpu_full_data.py:392: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
with autocast(dtype=torch.bfloat16):
/data2/edwardsun/flow_home/amp_flow_training_single_gpu_full_data.py:392: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
with autocast(dtype=torch.bfloat16):
Training Flow Model: 0%| | 1/2000 [00:49<27:39:59, 49.82s/it]Epoch 0 | Step 1/ 38000 | Loss: 2.290177 | LR: 1.20e-04 | Speed: 0.0 steps/s | ETA: 376.4h
Epoch 0 | Avg Loss: 1.109821 | LR: 1.24e-04 | Time: 49.8s | Samples: 6,983
/data2/edwardsun/flow_home/amp_flow_training_single_gpu_full_data.py:392: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
with autocast(dtype=torch.bfloat16):
/data2/edwardsun/flow_home/amp_flow_training_single_gpu_full_data.py:392: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
with autocast(dtype=torch.bfloat16):
Training Flow Model: 0%| | 2/2000 [00:55<13:22:45, 24.11s/it]Epoch 1 | Step 20/ 38000 | Loss: 1.010002 | LR: 1.24e-04 | Speed: 0.4 steps/s | ETA: 27.0h
Epoch 1 | Avg Loss: 1.002409 | LR: 1.28e-04 | Time: 6.1s | Samples: 6,983
/data2/edwardsun/flow_home/amp_flow_training_single_gpu_full_data.py:392: FutureWarning: `torch.cuda.amp.autocast(args...)` is deprecated. Please use `torch.amp.autocast('cuda', args...)` instead.
with autocast(dtype=torch.bfloat16):
Training Flow Model: 0%| | 3/2000 [00:59<8:09:52, 14.72s/it] Epoch 2 | Step 39/ 38000 | Loss: 0.998573 | LR: 1.28e-04 | Speed: 0.7 steps/s | ETA: 15.4h
Epoch 2 | Avg Loss: 0.910289 | LR: 1.32e-04 | Time: 3.5s | Samples: 6,983
Training Flow Model: 0%| | 4/2000 [01:02<5:42:30, 10.30s/it]Epoch 3 | Step 58/ 38000 | Loss: 0.787784 | LR: 1.33e-04 | Speed: 1.0 steps/s | ETA: 11.1h
Epoch 3 | Avg Loss: 0.644033 | LR: 1.36e-04 | Time: 3.5s | Samples: 6,983