Remove safe_llava_llama_pool.py (Pool naming removed)
Browse files
safellava/model/language_model/safe_llava_llama_pool.py
DELETED
|
@@ -1,618 +0,0 @@
|
|
| 1 |
-
from typing import List, Optional, Tuple, Union, Dict
|
| 2 |
-
|
| 3 |
-
import torch
|
| 4 |
-
import torch.nn as nn
|
| 5 |
-
from transformers import AutoConfig, AutoModelForCausalLM
|
| 6 |
-
from transformers.modeling_outputs import CausalLMOutputWithPast
|
| 7 |
-
|
| 8 |
-
from llava.model.language_model.llava_llama import (
|
| 9 |
-
LlavaConfig, LlavaLlamaModel, LlavaLlamaForCausalLM
|
| 10 |
-
)
|
| 11 |
-
from llava.constants import IMAGE_TOKEN_INDEX
|
| 12 |
-
|
| 13 |
-
from dataclasses import dataclass
|
| 14 |
-
|
| 15 |
-
import logging
|
| 16 |
-
from llava.utils import setup_simple_logging
|
| 17 |
-
|
| 18 |
-
setup_simple_logging()
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
@dataclass
|
| 22 |
-
class SafetyCausalLMOutputWithPast(CausalLMOutputWithPast):
|
| 23 |
-
"""
|
| 24 |
-
Base class for causal language model (or autoregressive) outputs with safety predictions.
|
| 25 |
-
"""
|
| 26 |
-
img_safety_logits: Optional[torch.FloatTensor] = None
|
| 27 |
-
img_safety_probs: Optional[torch.FloatTensor] = None
|
| 28 |
-
txt_safety_logits: Optional[torch.FloatTensor] = None
|
| 29 |
-
txt_safety_probs: Optional[torch.FloatTensor] = None
|
| 30 |
-
total_safety_logits: Optional[torch.FloatTensor] = None
|
| 31 |
-
total_safety_probs: Optional[torch.FloatTensor] = None
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
class SafetyMLP(nn.Module):
|
| 35 |
-
"""
|
| 36 |
-
Safety classification head implemented as Multi-layer Perceptron.
|
| 37 |
-
"""
|
| 38 |
-
|
| 39 |
-
def __init__(self, input_size: int, hidden_size: int, output_size: int,
|
| 40 |
-
safety_num_hidden_layers: int = 1):
|
| 41 |
-
super().__init__()
|
| 42 |
-
|
| 43 |
-
layers = []
|
| 44 |
-
|
| 45 |
-
layers.append(nn.Linear(input_size, hidden_size))
|
| 46 |
-
layers.append(nn.GELU())
|
| 47 |
-
|
| 48 |
-
for _ in range(safety_num_hidden_layers - 1):
|
| 49 |
-
layers.append(nn.Linear(hidden_size, hidden_size))
|
| 50 |
-
layers.append(nn.GELU())
|
| 51 |
-
|
| 52 |
-
layers.append(nn.Linear(hidden_size, output_size))
|
| 53 |
-
|
| 54 |
-
self.mlp = nn.Sequential(*layers)
|
| 55 |
-
|
| 56 |
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 57 |
-
return self.mlp(x)
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
class SafetyConfig(LlavaConfig):
|
| 61 |
-
"""Safety-aware configuration for pooling version without meta tokens"""
|
| 62 |
-
model_type = "safe_llava_llama_pool"
|
| 63 |
-
|
| 64 |
-
def __init__(
|
| 65 |
-
self,
|
| 66 |
-
safety_categories=None,
|
| 67 |
-
safety_num_hidden_layers=1,
|
| 68 |
-
unfreeze_mm_vision_tower=True,
|
| 69 |
-
delay_load_vision_tower=False,
|
| 70 |
-
safety_head_hidden_scale=4.0,
|
| 71 |
-
pooling_method="mean", # mean, max, or cls
|
| 72 |
-
attention_dropout=0.0, # Add missing attribute for compatibility
|
| 73 |
-
**kwargs
|
| 74 |
-
):
|
| 75 |
-
# Ensure attention_dropout is in kwargs if not provided
|
| 76 |
-
if 'attention_dropout' not in kwargs:
|
| 77 |
-
kwargs['attention_dropout'] = attention_dropout
|
| 78 |
-
|
| 79 |
-
super().__init__(**kwargs)
|
| 80 |
-
|
| 81 |
-
# Default safety categories if not provided (from original SafeLLaVA)
|
| 82 |
-
self.safety_categories = safety_categories or [
|
| 83 |
-
"safe",
|
| 84 |
-
"gender",
|
| 85 |
-
"race",
|
| 86 |
-
"religion",
|
| 87 |
-
"harassment",
|
| 88 |
-
"disability_discrimination",
|
| 89 |
-
"drug_crime",
|
| 90 |
-
"property_crime",
|
| 91 |
-
"facial_data",
|
| 92 |
-
"identity_data",
|
| 93 |
-
"physical_self_injury",
|
| 94 |
-
"suicide",
|
| 95 |
-
"animal_abuse",
|
| 96 |
-
"obscene_gestures",
|
| 97 |
-
"physical_altercation",
|
| 98 |
-
"terrorism",
|
| 99 |
-
"weapon_related_violence",
|
| 100 |
-
"sexual_content",
|
| 101 |
-
"financial_advice",
|
| 102 |
-
"medical_advice"
|
| 103 |
-
]
|
| 104 |
-
|
| 105 |
-
self.safety_num_hidden_layers = safety_num_hidden_layers
|
| 106 |
-
self.unfreeze_mm_vision_tower = unfreeze_mm_vision_tower
|
| 107 |
-
self.delay_load_vision_tower = delay_load_vision_tower
|
| 108 |
-
self.safety_head_hidden_scale = safety_head_hidden_scale
|
| 109 |
-
self.pooling_method = pooling_method
|
| 110 |
-
|
| 111 |
-
# Pool version doesn't use meta tokens
|
| 112 |
-
self.use_img_safety_meta_token = False
|
| 113 |
-
self.use_txt_safety_meta_token = False
|
| 114 |
-
self.use_total_safety_meta_token = False
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
class SafeLlavaLlamaForCausalLM(LlavaLlamaForCausalLM):
|
| 118 |
-
"""
|
| 119 |
-
SafeLLaVA-Pool: A simplified version without meta tokens.
|
| 120 |
-
Pools visual tokens directly for safety classification.
|
| 121 |
-
"""
|
| 122 |
-
|
| 123 |
-
config_class = SafetyConfig
|
| 124 |
-
|
| 125 |
-
def __init__(self, config: SafetyConfig):
|
| 126 |
-
super().__init__(config)
|
| 127 |
-
|
| 128 |
-
# Safety head for image classification (using pooled visual tokens)
|
| 129 |
-
self.img_safety_head = SafetyMLP(
|
| 130 |
-
input_size=config.hidden_size,
|
| 131 |
-
hidden_size=int(config.hidden_size * config.safety_head_hidden_scale),
|
| 132 |
-
output_size=len(config.safety_categories),
|
| 133 |
-
safety_num_hidden_layers=config.safety_num_hidden_layers
|
| 134 |
-
)
|
| 135 |
-
logging.info("Created img_safety_head for SafeLLaVA-Pool")
|
| 136 |
-
|
| 137 |
-
# Store pooling method
|
| 138 |
-
self.pooling_method = config.pooling_method
|
| 139 |
-
|
| 140 |
-
# Safety warning template
|
| 141 |
-
self.safety_warning_template = (
|
| 142 |
-
"I apologize, but I cannot provide a response as the content appears to be {category}. "
|
| 143 |
-
"I aim to maintain ethical and safe interactions. "
|
| 144 |
-
"Please feel free to ask about other topics that do not involve potentially harmful or inappropriate content."
|
| 145 |
-
)
|
| 146 |
-
|
| 147 |
-
def get_model(self):
|
| 148 |
-
return self.model
|
| 149 |
-
|
| 150 |
-
def get_safety_warning(self, unsafe_categories):
|
| 151 |
-
if len(unsafe_categories) == 1:
|
| 152 |
-
category_str = f"related to {unsafe_categories[0]}"
|
| 153 |
-
else:
|
| 154 |
-
category_str = "related to " + ", ".join(unsafe_categories[:-1]) + f" and {unsafe_categories[-1]}"
|
| 155 |
-
return self.safety_warning_template.format(category=category_str)
|
| 156 |
-
|
| 157 |
-
def pool_visual_tokens(self, hidden_states, input_ids, images):
|
| 158 |
-
"""
|
| 159 |
-
Pool visual tokens from hidden states.
|
| 160 |
-
|
| 161 |
-
Args:
|
| 162 |
-
hidden_states: Last layer hidden states [batch_size, seq_len, hidden_size]
|
| 163 |
-
input_ids: Original input token IDs to locate image positions
|
| 164 |
-
images: Input images tensor
|
| 165 |
-
|
| 166 |
-
Returns:
|
| 167 |
-
Pooled visual features [batch_size, hidden_size]
|
| 168 |
-
"""
|
| 169 |
-
batch_size = hidden_states.shape[0]
|
| 170 |
-
device = hidden_states.device
|
| 171 |
-
|
| 172 |
-
# If no images, return zeros
|
| 173 |
-
if images is None:
|
| 174 |
-
return torch.zeros(batch_size, hidden_states.shape[-1], device=device)
|
| 175 |
-
|
| 176 |
-
# Get the number of visual patches
|
| 177 |
-
vision_tower = self.get_vision_tower()
|
| 178 |
-
if vision_tower is not None and hasattr(vision_tower, 'config'):
|
| 179 |
-
# Calculate based on vision config
|
| 180 |
-
image_size = vision_tower.config.image_size
|
| 181 |
-
patch_size = vision_tower.config.patch_size
|
| 182 |
-
num_patches = (image_size // patch_size) ** 2
|
| 183 |
-
else:
|
| 184 |
-
num_patches = 576 # Default for CLIP ViT-L/14-336px
|
| 185 |
-
|
| 186 |
-
pooled_features = []
|
| 187 |
-
|
| 188 |
-
for batch_idx in range(batch_size):
|
| 189 |
-
try:
|
| 190 |
-
# Find where IMAGE_TOKEN_INDEX was in the original input
|
| 191 |
-
if input_ids is not None and batch_idx < input_ids.shape[0]:
|
| 192 |
-
image_positions = torch.where(input_ids[batch_idx] == IMAGE_TOKEN_INDEX)[0]
|
| 193 |
-
|
| 194 |
-
if len(image_positions) > 0:
|
| 195 |
-
# Visual tokens replace the IMAGE_TOKEN_INDEX
|
| 196 |
-
# The actual visual tokens start at this position
|
| 197 |
-
start_pos = image_positions[0].item()
|
| 198 |
-
end_pos = min(start_pos + num_patches, hidden_states.shape[1])
|
| 199 |
-
|
| 200 |
-
if end_pos > start_pos and (end_pos - start_pos) > 0:
|
| 201 |
-
visual_embeddings = hidden_states[batch_idx, start_pos:end_pos]
|
| 202 |
-
|
| 203 |
-
# Apply pooling
|
| 204 |
-
if visual_embeddings.shape[0] > 0:
|
| 205 |
-
if self.pooling_method == "mean":
|
| 206 |
-
pooled = visual_embeddings.mean(dim=0)
|
| 207 |
-
elif self.pooling_method == "max":
|
| 208 |
-
pooled = visual_embeddings.max(dim=0)[0]
|
| 209 |
-
elif self.pooling_method == "cls":
|
| 210 |
-
# Use the first visual token
|
| 211 |
-
pooled = visual_embeddings[0]
|
| 212 |
-
else:
|
| 213 |
-
pooled = visual_embeddings.mean(dim=0) # Default to mean
|
| 214 |
-
|
| 215 |
-
pooled_features.append(pooled)
|
| 216 |
-
else:
|
| 217 |
-
# Empty visual embeddings
|
| 218 |
-
pooled_features.append(torch.zeros(hidden_states.shape[-1], device=device))
|
| 219 |
-
else:
|
| 220 |
-
# Invalid range
|
| 221 |
-
pooled_features.append(torch.zeros(hidden_states.shape[-1], device=device))
|
| 222 |
-
else:
|
| 223 |
-
# No image token found, might be text-only sample
|
| 224 |
-
pooled_features.append(torch.zeros(hidden_states.shape[-1], device=device))
|
| 225 |
-
else:
|
| 226 |
-
# No input_ids available
|
| 227 |
-
pooled_features.append(torch.zeros(hidden_states.shape[-1], device=device))
|
| 228 |
-
|
| 229 |
-
except Exception as e:
|
| 230 |
-
logging.warning(f"Error pooling visual tokens for batch {batch_idx}: {str(e)}")
|
| 231 |
-
# Return zero vector on error
|
| 232 |
-
pooled_features.append(torch.zeros(hidden_states.shape[-1], device=device))
|
| 233 |
-
|
| 234 |
-
# Stack all pooled features
|
| 235 |
-
pooled_features = torch.stack(pooled_features, dim=0)
|
| 236 |
-
return pooled_features
|
| 237 |
-
|
| 238 |
-
def compute_gradcam(
|
| 239 |
-
self,
|
| 240 |
-
input_ids=None,
|
| 241 |
-
attention_mask=None,
|
| 242 |
-
images=None,
|
| 243 |
-
image_sizes=None,
|
| 244 |
-
target_class=None,
|
| 245 |
-
use_pre_pooling=False,
|
| 246 |
-
**kwargs,
|
| 247 |
-
):
|
| 248 |
-
"""
|
| 249 |
-
Compute Grad-CAM for the image safety classification.
|
| 250 |
-
|
| 251 |
-
Args:
|
| 252 |
-
input_ids: Input token IDs
|
| 253 |
-
attention_mask: Attention mask
|
| 254 |
-
images: Input images tensor [batch_size, 3, H, W]
|
| 255 |
-
image_sizes: Image sizes
|
| 256 |
-
target_class: Target class index for Grad-CAM. If None, uses the predicted class.
|
| 257 |
-
use_pre_pooling: If True, compute Grad-CAM before pooling for better spatial resolution
|
| 258 |
-
|
| 259 |
-
Returns:
|
| 260 |
-
dict with keys:
|
| 261 |
-
- 'heatmap': Grad-CAM heatmap [batch_size, H_feat, W_feat]
|
| 262 |
-
- 'predicted_class': Predicted class index
|
| 263 |
-
- 'predicted_prob': Probability of predicted class
|
| 264 |
-
- 'class_name': Name of the target class
|
| 265 |
-
"""
|
| 266 |
-
if images is None:
|
| 267 |
-
raise ValueError("Images are required for Grad-CAM computation")
|
| 268 |
-
|
| 269 |
-
# Enable gradient computation for images
|
| 270 |
-
# Note: We need to enable train mode for vision tower to compute gradients
|
| 271 |
-
was_training = self.training
|
| 272 |
-
was_vision_training = self.get_vision_tower().training
|
| 273 |
-
|
| 274 |
-
# Set vision tower to train mode to enable gradients
|
| 275 |
-
vision_tower = self.get_vision_tower()
|
| 276 |
-
vision_tower.train()
|
| 277 |
-
|
| 278 |
-
# CRITICAL: Enable gradients for vision tower parameters
|
| 279 |
-
# This is necessary because merged LoRA models might have frozen parameters
|
| 280 |
-
for param in vision_tower.parameters():
|
| 281 |
-
param.requires_grad = True
|
| 282 |
-
|
| 283 |
-
# Note: We keep model in eval mode for other components (dropout, batchnorm)
|
| 284 |
-
# but vision tower is in train mode for gradient computation
|
| 285 |
-
|
| 286 |
-
# Ensure images require grad
|
| 287 |
-
if not images.requires_grad:
|
| 288 |
-
images = images.clone().detach().requires_grad_(True)
|
| 289 |
-
|
| 290 |
-
logging.info(f"Images requires_grad: {images.requires_grad}")
|
| 291 |
-
|
| 292 |
-
# Store activations and gradients for Grad-CAM
|
| 293 |
-
activations = []
|
| 294 |
-
gradients = []
|
| 295 |
-
|
| 296 |
-
def save_gradient(grad):
|
| 297 |
-
"""Backward hook to capture gradients"""
|
| 298 |
-
logging.info(f"Gradient hook called! Grad shape: {grad.shape}")
|
| 299 |
-
gradients.append(grad.detach())
|
| 300 |
-
|
| 301 |
-
def forward_hook(module, input, output):
|
| 302 |
-
"""Forward hook to save activations and register backward hook"""
|
| 303 |
-
if isinstance(output, tuple):
|
| 304 |
-
activation = output[0]
|
| 305 |
-
else:
|
| 306 |
-
activation = output
|
| 307 |
-
|
| 308 |
-
logging.info(f"Forward hook: activation shape={activation.shape}, requires_grad={activation.requires_grad}")
|
| 309 |
-
|
| 310 |
-
# Register backward hook on the activation tensor itself BEFORE saving
|
| 311 |
-
if activation.requires_grad:
|
| 312 |
-
activation.register_hook(save_gradient)
|
| 313 |
-
logging.info("Registered backward hook on activation")
|
| 314 |
-
else:
|
| 315 |
-
logging.warning("Activation does not require grad, cannot register backward hook!")
|
| 316 |
-
|
| 317 |
-
# Save activation (keep gradient connection for now, will detach later if needed)
|
| 318 |
-
activations.append(activation)
|
| 319 |
-
|
| 320 |
-
# Register hook on vision tower
|
| 321 |
-
vision_tower = self.get_vision_tower()
|
| 322 |
-
if vision_tower is None:
|
| 323 |
-
raise AttributeError("Vision tower not found")
|
| 324 |
-
|
| 325 |
-
hook_handle = vision_tower.register_forward_hook(forward_hook)
|
| 326 |
-
|
| 327 |
-
try:
|
| 328 |
-
# Forward pass - Do normal forward but intercept and modify vision features
|
| 329 |
-
# CRITICAL: Use autograd.enable_grad() to force gradient tracking
|
| 330 |
-
|
| 331 |
-
# Store original vision tower forward
|
| 332 |
-
vision_tower = self.get_vision_tower()
|
| 333 |
-
original_forward = vision_tower.forward
|
| 334 |
-
|
| 335 |
-
# Create a wrapper that forces requires_grad on output
|
| 336 |
-
def forward_with_grad(*args, **kwargs):
|
| 337 |
-
output = original_forward(*args, **kwargs)
|
| 338 |
-
if not output.requires_grad:
|
| 339 |
-
output = output.clone().requires_grad_(True)
|
| 340 |
-
# Register hook on this tensor
|
| 341 |
-
output.register_hook(save_gradient)
|
| 342 |
-
# Save to activations
|
| 343 |
-
activations.append(output)
|
| 344 |
-
return output
|
| 345 |
-
|
| 346 |
-
# Temporarily replace forward
|
| 347 |
-
vision_tower.forward = forward_with_grad
|
| 348 |
-
|
| 349 |
-
try:
|
| 350 |
-
with torch.enable_grad():
|
| 351 |
-
if use_pre_pooling:
|
| 352 |
-
# For pre-pooling Grad-CAM, we need to capture the visual tokens from hidden_states
|
| 353 |
-
# before they are pooled
|
| 354 |
-
pre_pool_activations = []
|
| 355 |
-
pre_pool_gradients = []
|
| 356 |
-
|
| 357 |
-
def save_pre_pool_gradient(grad):
|
| 358 |
-
pre_pool_gradients.append(grad)
|
| 359 |
-
|
| 360 |
-
# Store original pool_visual_tokens method
|
| 361 |
-
original_pool_method = self.pool_visual_tokens
|
| 362 |
-
|
| 363 |
-
# Replace with a wrapper that captures pre-pooling features
|
| 364 |
-
def pool_with_capture(hidden_states, input_ids, images):
|
| 365 |
-
# Extract visual tokens before pooling
|
| 366 |
-
# Visual tokens are typically in the positions where image tokens were
|
| 367 |
-
batch_size = hidden_states.shape[0]
|
| 368 |
-
|
| 369 |
-
# Find image token positions
|
| 370 |
-
# The image token index is -200 by default in LLaVA
|
| 371 |
-
IMAGE_TOKEN_INDEX = -200
|
| 372 |
-
image_token_indices = []
|
| 373 |
-
for batch_idx in range(batch_size):
|
| 374 |
-
image_positions = (input_ids[batch_idx] == IMAGE_TOKEN_INDEX).nonzero(as_tuple=True)[0]
|
| 375 |
-
if len(image_positions) > 0:
|
| 376 |
-
image_token_indices.append(image_positions)
|
| 377 |
-
|
| 378 |
-
# Extract visual features before pooling
|
| 379 |
-
if len(image_token_indices) > 0:
|
| 380 |
-
visual_features = hidden_states[0, image_token_indices[0]] # [num_patches, hidden_dim]
|
| 381 |
-
visual_features = visual_features.clone().requires_grad_(True)
|
| 382 |
-
pre_pool_activations.append(visual_features)
|
| 383 |
-
visual_features.register_hook(save_pre_pool_gradient)
|
| 384 |
-
|
| 385 |
-
# Call original pooling method
|
| 386 |
-
return original_pool_method(hidden_states, input_ids, images)
|
| 387 |
-
|
| 388 |
-
# Temporarily replace the pooling method
|
| 389 |
-
self.pool_visual_tokens = pool_with_capture
|
| 390 |
-
|
| 391 |
-
# Now do the full forward pass
|
| 392 |
-
outputs = self.forward(
|
| 393 |
-
input_ids=input_ids,
|
| 394 |
-
attention_mask=attention_mask,
|
| 395 |
-
images=images,
|
| 396 |
-
image_sizes=image_sizes,
|
| 397 |
-
do_safety=True,
|
| 398 |
-
return_dict=True,
|
| 399 |
-
**kwargs
|
| 400 |
-
)
|
| 401 |
-
|
| 402 |
-
img_safety_logits = outputs.img_safety_logits
|
| 403 |
-
img_safety_probs = outputs.img_safety_probs
|
| 404 |
-
|
| 405 |
-
if use_pre_pooling:
|
| 406 |
-
# Restore original pooling method
|
| 407 |
-
self.pool_visual_tokens = original_pool_method
|
| 408 |
-
finally:
|
| 409 |
-
# Restore original forward
|
| 410 |
-
vision_tower.forward = original_forward
|
| 411 |
-
|
| 412 |
-
# Get predicted class if not specified
|
| 413 |
-
if target_class is None:
|
| 414 |
-
# Use the class with highest probability
|
| 415 |
-
target_class = img_safety_probs.argmax(dim=-1)
|
| 416 |
-
else:
|
| 417 |
-
# Ensure target_class is a tensor
|
| 418 |
-
if isinstance(target_class, int):
|
| 419 |
-
target_class = torch.tensor([target_class], device=img_safety_probs.device)
|
| 420 |
-
|
| 421 |
-
# Get the logit for the target class
|
| 422 |
-
batch_size = img_safety_probs.shape[0]
|
| 423 |
-
target_logits = img_safety_logits[torch.arange(batch_size), target_class]
|
| 424 |
-
|
| 425 |
-
# Backward pass to compute gradients
|
| 426 |
-
self.zero_grad()
|
| 427 |
-
target_logits.sum().backward()
|
| 428 |
-
|
| 429 |
-
# Choose which activations and gradients to use
|
| 430 |
-
if use_pre_pooling:
|
| 431 |
-
# Use pre-pooling features for better spatial resolution
|
| 432 |
-
if 'pre_pool_activations' not in locals() or len(pre_pool_activations) == 0:
|
| 433 |
-
raise RuntimeError("Failed to capture pre-pooling activations")
|
| 434 |
-
if 'pre_pool_gradients' not in locals() or len(pre_pool_gradients) == 0:
|
| 435 |
-
raise RuntimeError("Failed to capture pre-pooling gradients")
|
| 436 |
-
|
| 437 |
-
# Get the pre-pooling features
|
| 438 |
-
# These have spatial structure: [num_patches, hidden_dim]
|
| 439 |
-
activation = pre_pool_activations[0].detach()
|
| 440 |
-
gradient = pre_pool_gradients[0]
|
| 441 |
-
|
| 442 |
-
# Add batch dimension if needed for consistency
|
| 443 |
-
if activation.dim() == 2:
|
| 444 |
-
activation = activation.unsqueeze(0) # [1, num_patches, hidden_dim]
|
| 445 |
-
gradient = gradient.unsqueeze(0)
|
| 446 |
-
else:
|
| 447 |
-
# Use post-pooling features (original behavior - from vision tower)
|
| 448 |
-
if len(activations) == 0:
|
| 449 |
-
raise RuntimeError("Failed to capture activations")
|
| 450 |
-
if len(gradients) == 0:
|
| 451 |
-
raise RuntimeError("Failed to capture gradients")
|
| 452 |
-
|
| 453 |
-
activation = activations[0].detach() # [batch_size, num_patches, hidden_dim]
|
| 454 |
-
gradient = gradients[0] # [batch_size, num_patches, hidden_dim]
|
| 455 |
-
|
| 456 |
-
# Compute Grad-CAM with correct formula
|
| 457 |
-
# For Vision Transformer: gradients and activations are [batch, num_patches, hidden_dim]
|
| 458 |
-
# Standard Grad-CAM: compute importance by averaging gradients across hidden dimension
|
| 459 |
-
# Then weight the activations
|
| 460 |
-
|
| 461 |
-
# Option 1: Standard Grad-CAM - use gradient magnitude as importance
|
| 462 |
-
# This captures which patches have the strongest gradient signal
|
| 463 |
-
cam = (gradient * activation).sum(dim=-1) # [batch_size, num_patches]
|
| 464 |
-
|
| 465 |
-
# Alternative would be:
|
| 466 |
-
# weights = gradient.mean(dim=1, keepdim=True) # Average across patches
|
| 467 |
-
# cam = (activation * weights).sum(dim=-1)
|
| 468 |
-
|
| 469 |
-
# Apply ReLU (only positive contributions)
|
| 470 |
-
cam = torch.nn.functional.relu(cam)
|
| 471 |
-
|
| 472 |
-
# Reshape to 2D spatial grid
|
| 473 |
-
# CLIP ViT-L/14-336px has 24x24 patches
|
| 474 |
-
num_patches_per_side = int(cam.shape[1] ** 0.5)
|
| 475 |
-
cam = cam.reshape(batch_size, num_patches_per_side, num_patches_per_side)
|
| 476 |
-
|
| 477 |
-
# Normalize to [0, 1]
|
| 478 |
-
for i in range(batch_size):
|
| 479 |
-
cam_min = cam[i].min()
|
| 480 |
-
cam_max = cam[i].max()
|
| 481 |
-
if cam_max > cam_min:
|
| 482 |
-
cam[i] = (cam[i] - cam_min) / (cam_max - cam_min)
|
| 483 |
-
|
| 484 |
-
# Get class names
|
| 485 |
-
if isinstance(target_class, torch.Tensor):
|
| 486 |
-
target_class_idx = target_class[0].item()
|
| 487 |
-
else:
|
| 488 |
-
target_class_idx = target_class
|
| 489 |
-
|
| 490 |
-
class_name = self.config.safety_categories[target_class_idx]
|
| 491 |
-
|
| 492 |
-
return {
|
| 493 |
-
'heatmap': cam.detach().cpu().numpy(),
|
| 494 |
-
'predicted_class': target_class.cpu().numpy() if isinstance(target_class, torch.Tensor) else target_class,
|
| 495 |
-
'predicted_prob': img_safety_probs[torch.arange(batch_size), target_class].detach().cpu().numpy(),
|
| 496 |
-
'class_name': class_name,
|
| 497 |
-
'all_probs': img_safety_probs.detach().cpu().numpy()
|
| 498 |
-
}
|
| 499 |
-
|
| 500 |
-
finally:
|
| 501 |
-
# Remove hook
|
| 502 |
-
hook_handle.remove()
|
| 503 |
-
# Restore training state
|
| 504 |
-
if not was_vision_training:
|
| 505 |
-
self.get_vision_tower().eval()
|
| 506 |
-
if was_training:
|
| 507 |
-
self.train()
|
| 508 |
-
|
| 509 |
-
def forward(
|
| 510 |
-
self,
|
| 511 |
-
input_ids=None,
|
| 512 |
-
attention_mask=None,
|
| 513 |
-
position_ids=None,
|
| 514 |
-
past_key_values=None,
|
| 515 |
-
inputs_embeds=None,
|
| 516 |
-
labels=None,
|
| 517 |
-
use_cache=None,
|
| 518 |
-
output_attentions=None,
|
| 519 |
-
output_hidden_states=None,
|
| 520 |
-
images=None,
|
| 521 |
-
image_sizes=None,
|
| 522 |
-
return_dict=None,
|
| 523 |
-
do_safety=False,
|
| 524 |
-
**kwargs,
|
| 525 |
-
) -> Union[Tuple, CausalLMOutputWithPast, SafetyCausalLMOutputWithPast]:
|
| 526 |
-
"""
|
| 527 |
-
Forward method for SafeLLaVA-Pool.
|
| 528 |
-
When do_safety=True, extracts and pools visual tokens for safety classification.
|
| 529 |
-
"""
|
| 530 |
-
|
| 531 |
-
# Store original input_ids for finding image token positions
|
| 532 |
-
original_input_ids = input_ids.clone() if input_ids is not None else None
|
| 533 |
-
|
| 534 |
-
# If do_safety is True, force output_hidden_states to True
|
| 535 |
-
if do_safety and (output_hidden_states is not True):
|
| 536 |
-
output_hidden_states = True
|
| 537 |
-
return_dict = True
|
| 538 |
-
|
| 539 |
-
# Prepare inputs for multimodal (handles image embedding)
|
| 540 |
-
if inputs_embeds is None:
|
| 541 |
-
(
|
| 542 |
-
input_ids,
|
| 543 |
-
position_ids,
|
| 544 |
-
attention_mask,
|
| 545 |
-
past_key_values,
|
| 546 |
-
inputs_embeds,
|
| 547 |
-
labels
|
| 548 |
-
) = self.prepare_inputs_labels_for_multimodal(
|
| 549 |
-
input_ids,
|
| 550 |
-
position_ids,
|
| 551 |
-
attention_mask,
|
| 552 |
-
past_key_values,
|
| 553 |
-
labels,
|
| 554 |
-
images,
|
| 555 |
-
image_sizes
|
| 556 |
-
)
|
| 557 |
-
|
| 558 |
-
# Call parent's forward method
|
| 559 |
-
outputs = super(LlavaLlamaForCausalLM, self).forward(
|
| 560 |
-
input_ids=input_ids,
|
| 561 |
-
attention_mask=attention_mask,
|
| 562 |
-
position_ids=position_ids,
|
| 563 |
-
past_key_values=past_key_values,
|
| 564 |
-
inputs_embeds=inputs_embeds,
|
| 565 |
-
labels=labels,
|
| 566 |
-
use_cache=use_cache,
|
| 567 |
-
output_attentions=output_attentions,
|
| 568 |
-
output_hidden_states=output_hidden_states,
|
| 569 |
-
return_dict=True,
|
| 570 |
-
**kwargs
|
| 571 |
-
)
|
| 572 |
-
|
| 573 |
-
# If do_safety=False, just return the outputs
|
| 574 |
-
if not do_safety:
|
| 575 |
-
if return_dict is False:
|
| 576 |
-
return (outputs.loss, outputs.logits, outputs.past_key_values,
|
| 577 |
-
outputs.hidden_states, outputs.attentions)
|
| 578 |
-
return outputs
|
| 579 |
-
|
| 580 |
-
# Safety classification using pooled visual tokens
|
| 581 |
-
hidden_states = outputs.hidden_states[-1] # Last layer hidden states
|
| 582 |
-
|
| 583 |
-
# Check if we have images to process
|
| 584 |
-
if images is None:
|
| 585 |
-
# No images, return outputs without safety
|
| 586 |
-
return outputs
|
| 587 |
-
|
| 588 |
-
# Pool visual tokens
|
| 589 |
-
pooled_visual_features = self.pool_visual_tokens(hidden_states, original_input_ids, images)
|
| 590 |
-
|
| 591 |
-
# Pass through safety head
|
| 592 |
-
img_safety_logits = self.img_safety_head(pooled_visual_features)
|
| 593 |
-
img_safety_probs = torch.softmax(img_safety_logits, dim=-1)
|
| 594 |
-
|
| 595 |
-
# Return results with safety outputs
|
| 596 |
-
if not return_dict:
|
| 597 |
-
return (outputs.loss, outputs.logits, outputs.past_key_values,
|
| 598 |
-
outputs.hidden_states, outputs.attentions,
|
| 599 |
-
img_safety_logits, img_safety_probs)
|
| 600 |
-
|
| 601 |
-
return SafetyCausalLMOutputWithPast(
|
| 602 |
-
loss=outputs.loss,
|
| 603 |
-
logits=outputs.logits,
|
| 604 |
-
past_key_values=outputs.past_key_values,
|
| 605 |
-
hidden_states=outputs.hidden_states,
|
| 606 |
-
attentions=outputs.attentions,
|
| 607 |
-
img_safety_logits=img_safety_logits,
|
| 608 |
-
img_safety_probs=img_safety_probs,
|
| 609 |
-
txt_safety_logits=None, # Not used in Pool version
|
| 610 |
-
txt_safety_probs=None,
|
| 611 |
-
total_safety_logits=None,
|
| 612 |
-
total_safety_probs=None
|
| 613 |
-
)
|
| 614 |
-
|
| 615 |
-
|
| 616 |
-
# Register the model
|
| 617 |
-
AutoConfig.register("safe_llava_llama_pool", SafetyConfig)
|
| 618 |
-
AutoModelForCausalLM.register(SafetyConfig, SafeLlavaLlamaForCausalLM)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|