File size: 11,101 Bytes
73bcbf2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
# pylint: disable=too-many-arguments, too-many-positional-arguments, too-many-instance-attributes, too-many-locals
"""
Author : Fabien FURFARO
"""

import logging
import os
import re
from typing import Any, Dict, List, Optional, Union
from jinja2 import Environment, FileSystemLoader

import psutil
import torch
from transformers import AutoConfig, PretrainedConfig

logger = logging.getLogger(__name__)  # monitoring

# Constants
BYTES_IN_GB = 1024**3


def convert_sets_to_lists(obj):
    """Convert sets to list for LoRA serialized config"""
    if isinstance(obj, set):
        return list(obj)
    if isinstance(obj, dict):
        return {k: convert_sets_to_lists(v) for k, v in obj.items()}
    if isinstance(obj, (list, tuple)):
        return [convert_sets_to_lists(x) for x in obj]
    return obj


class TpttConfig(PretrainedConfig):
    """
    Configuration class for the TPTT model.
    This class merges the backbone config (e.g., Llama) with custom TPTT parameters,
    """

    model_type = "tptt"
    auto_map = {
        "AutoModelForCausalLM": "modeling_tptt.TpttModel",
        "AutoConfig": "configuration_tptt.TpttConfig",
    }
    architectures = ["TpttModel"]

    RECURRENT_MODES = {
        "delta_rule": {
            "order": 1,
            "gate_type": "k",
            "linear": True,
            "trick": "derivative",
        },
        "delta_rule_v": {
            "order": 1,
            "gate_type": "v",
            "linear": True,
            "trick": "derivative",
        },
        "delta_rule_kv": {
            "order": 1,
            "gate_type": "kv",
            "linear": True,
            "trick": "derivative",
        },
        "delta_rule_gelu": {
            "order": 1,
            "gate_type": "k",
            "linear": False,
            "trick": "derivative",
        },
        "delta_product": {
            "order": 2,
            "gate_type": "k",
            "linear": True,
            "trick": "derivative",
        },
        "delta_product_r": {
            "order": 2,
            "gate_type": "k",
            "linear": True,
            "trick": "rotative",
        },
        "delta_product_c": {
            "order": 2,
            "gate_type": "k",
            "linear": True,
            "trick": "combined",
        },
    }  # Tested modes, see parse_mode_name if you want to add more

    def __init__(
        self,
        base_model_config: Optional[Union[dict, PretrainedConfig]] = None,
        base_model_name: str = "meta-llama/Llama-3.2-1B",
        base_model_subfolder: Optional[str] = None,
        name_or_path: Optional[str] = None,
        model_task: str = "causal_lm",
        target_modules_names: Optional[List[str]] = None,
        operator_mode: str = "delta_rule",
        use_linear_checkpoint: Optional[bool] = None,
        max_self_attn_length: Optional[
            int
        ] = None,  # unnecessary if SWA, else, standards 8192
        base_scale_attn: bool = False,
        mag_weight: float = 0.5,  # if 1.0, use only linear operator
        cross_gate: bool = False,  # unlinear mixing strategy
        max_chunk_size: int = 64,  # 128 if adaptive chunking (longest)
        linear_precision: Union[str, torch.dtype] = "float32",
        lora_config: Optional[dict] = None,  # only serialized accepted
        padding_side: Optional[str] = None,  # for tokenizer, default "right"
        bidirectional: bool = False,  # if True, use bidirectional attention
        pooling_config: Optional[Dict[str, Any]] = None,
        **kwargs,
    ):
        # If base_model_config is provided, load it and merge with this config
        if base_model_config is not None:
            if isinstance(base_model_config, PretrainedConfig):
                base_model_config = base_model_config.to_dict()
        else:
            # Load config from Hugging Face Hub or a local path
            base_model_config = AutoConfig.from_pretrained(
                base_model_name, **kwargs
            ).to_dict()
        # Merge all backbone fields into this config
        for k, v in base_model_config.items():
            setattr(self, k, v)

        self.base_model_name = base_model_name
        self.base_model_subfolder = base_model_subfolder
        self.model_task = model_task

        if name_or_path is not None:
            self._name_or_path = name_or_path
        else:
            if "/" in base_model_name:
                self._name_or_path = "Titans-" + base_model_name.split("/", 1)[1]
            else:
                self._name_or_path = "Titans-" + base_model_name

        self.target_modules_names = target_modules_names or [
            "attn",
            "self_attn",
            "attention",
        ]
        self.operator_mode = operator_mode

        # Detect available memory on accelerator device
        if torch.cuda.is_available():
            _, total_mem = torch.cuda.mem_get_info()
        else:
            total_mem = psutil.virtual_memory().total
        total_mem_gb = total_mem / BYTES_IN_GB

        self.use_linear_checkpoint = (
            total_mem_gb < 16
            if use_linear_checkpoint is None
            else use_linear_checkpoint
        )

        self.base_scale_attn = base_scale_attn
        self.mag_weight = mag_weight
        self.cross_gate = cross_gate
        self.max_chunk_size = max_chunk_size
        self.max_self_attn_length = max_self_attn_length
        if isinstance(linear_precision, torch.dtype):
            linear_precision = str(linear_precision).replace("torch.", "")
        self.linear_precision = linear_precision

        self.lora_config = lora_config
        if lora_config is not None:
            if hasattr(self.lora_config.get("peft_type"), "value"):
                self.lora_config["peft_type"] = self.lora_config["peft_type"].value
            self.lora_config = convert_sets_to_lists(self.lora_config)

        self.padding_side = padding_side
        self.bidirectional = bidirectional
        if self.bidirectional:
            print("Bidirectional is enabled, need to be uncausal and unpadded.")
        self.pooling_config = pooling_config

        super().__init__(**kwargs)  # flush unconsistend pretrained parameters (?)
        # Copy class attributes to instance for serialization (save dict)
        self.model_type = self.__class__.model_type
        self.auto_map = self.__class__.auto_map
        self.architectures = self.__class__.architectures
        # Padding side configuration if not set
        if self.padding_side is None:
            self.padding_side = "right"
            logger.info("Warning: padding_side is None, defaulting to 'right'.")
        # set recurrent configuration from operator mode
        if operator_mode not in self.__class__.RECURRENT_MODES:
            self.recurrent_config = parse_mode_name(operator_mode)
        else:
            self.recurrent_config = self.__class__.RECURRENT_MODES[operator_mode]
        logger.info("Using recurrent mode: %s", get_mode_name(**self.recurrent_config))


TpttConfig.register_for_auto_class()


def parse_mode_name(name: str) -> dict:
    """Parse mode to recurrent config"""
    if name.startswith("delta_product"):
        parts = name.split("_")
        # Prefix is always two words: 'delta' and 'product'
        base_len = 2
        order = 2
        gate_type = "k"
        linear = True
        trick = "derivative"

        idx = base_len
        # Check for order (immediately after the prefix)
        if len(parts) > idx and parts[idx].isdigit():
            order = int(parts[idx])
            idx += 1

        remaining = parts[idx:]
        # Trick (r/c) is always at the far right if present
        if remaining and remaining[-1] in ("r", "c"):
            trick = {"r": "rotative", "c": "combined"}[remaining[-1]]
            remaining = remaining[:-1]
        # 'gelu' comes just before the trick if present
        if remaining and remaining[-1] == "gelu":
            linear = False
            remaining = remaining[:-1]
        # If anything remains, it's the gate_type
        if remaining:
            gate_type = "_".join(remaining)
        return {
            "order": order,
            "gate_type": gate_type,
            "linear": linear,
            "trick": trick,
        }

    # delta_rule[_gate][_gelu]
    m = re.match(r"^delta_rule(?:_(kv|v|k))?(_gelu)?$", name)
    if m:
        return {
            "order": 1,
            "gate_type": m.group(1) if m.group(1) else "k",
            "linear": not bool(m.group(2)),
            "trick": "derivative",
        }
    raise ValueError(f"Unknown mode: {name}")


def get_mode_name(
    order: int = 1, gate_type: str = "k", linear: bool = True, trick: str = "derivative"
) -> str:
    """Get recurrent mode name from parameter"""
    base = (
        "delta_rule"
        if order == 1
        else ("delta_product" if order == 2 else f"delta_product_{order}")
    )
    parts = []
    if gate_type != "k":
        parts.append(gate_type)
    if not linear:
        parts.append("gelu")
    if order >= 2 and trick != "derivative":
        parts.append({"rotative": "r", "combined": "c"}.get(trick, trick))
    return base + (("_" + "_".join(parts)) if parts else "")


def render_template(template_path: str, variables: dict) -> str:
    """Load and render a Jinja2 template from any file path."""
    env = Environment(loader=FileSystemLoader(os.path.dirname(template_path)))
    template = env.get_template(os.path.basename(template_path))
    return template.render(**variables)


def write_model_card(output_path: str, content: str):
    """Write the generated content into README.md."""
    os.makedirs(output_path, exist_ok=True)
    readme_path = os.path.join(output_path, "README.md")
    with open(readme_path, "w", encoding="utf-8") as f:
        f.write(content)


def generate_model_card(
    output_path: str,
    config: Union[dict, object],
    template: Optional[
        str
    ],  # can be "model_card" OR an absolute/relative path to a .md file
    extra_variables: Optional[Dict] = None,
):
    """
    Generate a README.md file from a Jinja2 template and a configuration.

    - template can be either:
        * a full path to a template file
        * a short name (e.g., "model_card") -> will be looked up inside default_templates_dir
    """
    if template is None:
        template = "model_card_template"  # default template name
    # Locate the template
    if os.path.exists(template):  # direct file path provided
        template_path = template
    else:
        default_templates_dir = os.path.join(os.path.dirname(__file__), "templates")
        template_path = os.path.join(default_templates_dir, f"{template}.md")

    if not os.path.exists(template_path):
        raise FileNotFoundError(f"Template not found: {template_path}")

    variables = {
        "model_id": os.path.basename(output_path),
        "config": config,
    }
    if extra_variables:
        variables.update(extra_variables)

    content = render_template(template_path, variables)
    write_model_card(output_path, content)