Upload model + init tptt code
Browse files- lora_delta_product_m0.5_constant/README.md +5 -5
- lora_delta_product_m0.5_constant/adapter_model.safetensors +1 -1
- lora_delta_product_m0.5_constant/config.json +4 -4
- lora_delta_product_m0.5_constant/modeling_tptt.py +4 -1
- lora_delta_product_m0.5_constant/runs/Aug29_07-27-47_c47f5a3d6521/events.out.tfevents.1756452484.c47f5a3d6521.19.0 +3 -0
- modeling_tptt.py +4 -1
- train_tptt.py +1 -1
lora_delta_product_m0.5_constant/README.md
CHANGED
|
@@ -75,17 +75,17 @@ print(tokenizer.decode(outputs, skip_special_tokens=True))
|
|
| 75 |
- **Batch size:** 1
|
| 76 |
- **Epochs:** 1.0
|
| 77 |
- **Learning rate (final):** N/A
|
| 78 |
-
- **Loss (final):** 1.
|
| 79 |
-
- **Training runtime:**
|
| 80 |
-
- **Samples per second:** 0.
|
| 81 |
-
- **Steps per second:** 0.
|
| 82 |
- **Total FLOPs:** 5574366965268480.0
|
| 83 |
- **Gradient norm (final):** N/A
|
| 84 |
|
| 85 |
## Evaluation
|
| 86 |
|
| 87 |
- **Metrics:** Training loss only (no eval yet, table soon : PiQA, ARC, Hella, Wino, GSM8K, MMLU)
|
| 88 |
-
- **Results:** Final training loss: 1.
|
| 89 |
|
| 90 |
|
| 91 |
## Citation & Contact
|
|
|
|
| 75 |
- **Batch size:** 1
|
| 76 |
- **Epochs:** 1.0
|
| 77 |
- **Learning rate (final):** N/A
|
| 78 |
+
- **Loss (final):** 1.2270214224887408
|
| 79 |
+
- **Training runtime:** 11919.5421 sec
|
| 80 |
+
- **Samples per second:** 0.168
|
| 81 |
+
- **Steps per second:** 0.168
|
| 82 |
- **Total FLOPs:** 5574366965268480.0
|
| 83 |
- **Gradient norm (final):** N/A
|
| 84 |
|
| 85 |
## Evaluation
|
| 86 |
|
| 87 |
- **Metrics:** Training loss only (no eval yet, table soon : PiQA, ARC, Hella, Wino, GSM8K, MMLU)
|
| 88 |
+
- **Results:** Final training loss: 1.2270214224887408
|
| 89 |
|
| 90 |
|
| 91 |
## Citation & Contact
|
lora_delta_product_m0.5_constant/adapter_model.safetensors
CHANGED
|
@@ -1,3 +1,3 @@
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
-
oid sha256:
|
| 3 |
size 27298792
|
|
|
|
| 1 |
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2c2081ab470b794ec92ac84ee7460cf5e9717d100c98b572257d5616a5daa2ec
|
| 3 |
size 27298792
|
lora_delta_product_m0.5_constant/config.json
CHANGED
|
@@ -43,10 +43,10 @@
|
|
| 43 |
"rank_pattern": {},
|
| 44 |
"revision": null,
|
| 45 |
"target_modules": [
|
| 46 |
-
"q_proj",
|
| 47 |
-
"k_proj",
|
| 48 |
"o_proj",
|
| 49 |
-
"
|
|
|
|
|
|
|
| 50 |
],
|
| 51 |
"task_type": "CAUSAL_LM",
|
| 52 |
"use_dora": false,
|
|
@@ -79,7 +79,7 @@
|
|
| 79 |
"attention"
|
| 80 |
],
|
| 81 |
"torch_dtype": "bfloat16",
|
| 82 |
-
"transformers_version": "4.
|
| 83 |
"use_cache": true,
|
| 84 |
"use_linear_checkpoint": true,
|
| 85 |
"vocab_size": 32768
|
|
|
|
| 43 |
"rank_pattern": {},
|
| 44 |
"revision": null,
|
| 45 |
"target_modules": [
|
|
|
|
|
|
|
| 46 |
"o_proj",
|
| 47 |
+
"k_proj",
|
| 48 |
+
"v_proj",
|
| 49 |
+
"q_proj"
|
| 50 |
],
|
| 51 |
"task_type": "CAUSAL_LM",
|
| 52 |
"use_dora": false,
|
|
|
|
| 79 |
"attention"
|
| 80 |
],
|
| 81 |
"torch_dtype": "bfloat16",
|
| 82 |
+
"transformers_version": "4.51.3",
|
| 83 |
"use_cache": true,
|
| 84 |
"use_linear_checkpoint": true,
|
| 85 |
"vocab_size": 32768
|
lora_delta_product_m0.5_constant/modeling_tptt.py
CHANGED
|
@@ -312,6 +312,7 @@ class LiZAttention(nn.Module):
|
|
| 312 |
self.head_dim,
|
| 313 |
self.num_key_value_heads,
|
| 314 |
self.num_key_value_groups,
|
|
|
|
| 315 |
) = self._get_attention_parameters(base_attn, base_config)
|
| 316 |
self.scaling = self.head_dim**-0.5
|
| 317 |
|
|
@@ -321,7 +322,7 @@ class LiZAttention(nn.Module):
|
|
| 321 |
operator_mode=operator_mode,
|
| 322 |
use_linear_checkpoint=use_linear_checkpoint,
|
| 323 |
recurrent_config=recurrent_config,
|
| 324 |
-
hidden_dim=
|
| 325 |
num_heads=self.num_heads,
|
| 326 |
head_dim=self.head_dim,
|
| 327 |
num_key_value_heads=self.num_key_value_heads,
|
|
@@ -364,11 +365,13 @@ class LiZAttention(nn.Module):
|
|
| 364 |
num_key_value_groups = getattr(base_attn, "num_key_value_groups", None) or (
|
| 365 |
num_heads // num_key_value_heads if num_heads and num_key_value_heads else 1
|
| 366 |
)
|
|
|
|
| 367 |
return (
|
| 368 |
num_heads,
|
| 369 |
head_dim,
|
| 370 |
num_key_value_heads,
|
| 371 |
num_key_value_groups,
|
|
|
|
| 372 |
)
|
| 373 |
|
| 374 |
def _apply_shared_projections(
|
|
|
|
| 312 |
self.head_dim,
|
| 313 |
self.num_key_value_heads,
|
| 314 |
self.num_key_value_groups,
|
| 315 |
+
self.hidden_dim,
|
| 316 |
) = self._get_attention_parameters(base_attn, base_config)
|
| 317 |
self.scaling = self.head_dim**-0.5
|
| 318 |
|
|
|
|
| 322 |
operator_mode=operator_mode,
|
| 323 |
use_linear_checkpoint=use_linear_checkpoint,
|
| 324 |
recurrent_config=recurrent_config,
|
| 325 |
+
hidden_dim=self.hidden_dim,
|
| 326 |
num_heads=self.num_heads,
|
| 327 |
head_dim=self.head_dim,
|
| 328 |
num_key_value_heads=self.num_key_value_heads,
|
|
|
|
| 365 |
num_key_value_groups = getattr(base_attn, "num_key_value_groups", None) or (
|
| 366 |
num_heads // num_key_value_heads if num_heads and num_key_value_heads else 1
|
| 367 |
)
|
| 368 |
+
hidden_dim = getattr(base_config, "hidden_size", None) or head_dim * num_heads
|
| 369 |
return (
|
| 370 |
num_heads,
|
| 371 |
head_dim,
|
| 372 |
num_key_value_heads,
|
| 373 |
num_key_value_groups,
|
| 374 |
+
hidden_dim,
|
| 375 |
)
|
| 376 |
|
| 377 |
def _apply_shared_projections(
|
lora_delta_product_m0.5_constant/runs/Aug29_07-27-47_c47f5a3d6521/events.out.tfevents.1756452484.c47f5a3d6521.19.0
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:fc53b55271fd13e60534334a32a02a17d8dba6167a60bd2d77142740b1d7fc18
|
| 3 |
+
size 115789
|
modeling_tptt.py
CHANGED
|
@@ -312,6 +312,7 @@ class LiZAttention(nn.Module):
|
|
| 312 |
self.head_dim,
|
| 313 |
self.num_key_value_heads,
|
| 314 |
self.num_key_value_groups,
|
|
|
|
| 315 |
) = self._get_attention_parameters(base_attn, base_config)
|
| 316 |
self.scaling = self.head_dim**-0.5
|
| 317 |
|
|
@@ -321,7 +322,7 @@ class LiZAttention(nn.Module):
|
|
| 321 |
operator_mode=operator_mode,
|
| 322 |
use_linear_checkpoint=use_linear_checkpoint,
|
| 323 |
recurrent_config=recurrent_config,
|
| 324 |
-
hidden_dim=
|
| 325 |
num_heads=self.num_heads,
|
| 326 |
head_dim=self.head_dim,
|
| 327 |
num_key_value_heads=self.num_key_value_heads,
|
|
@@ -364,11 +365,13 @@ class LiZAttention(nn.Module):
|
|
| 364 |
num_key_value_groups = getattr(base_attn, "num_key_value_groups", None) or (
|
| 365 |
num_heads // num_key_value_heads if num_heads and num_key_value_heads else 1
|
| 366 |
)
|
|
|
|
| 367 |
return (
|
| 368 |
num_heads,
|
| 369 |
head_dim,
|
| 370 |
num_key_value_heads,
|
| 371 |
num_key_value_groups,
|
|
|
|
| 372 |
)
|
| 373 |
|
| 374 |
def _apply_shared_projections(
|
|
|
|
| 312 |
self.head_dim,
|
| 313 |
self.num_key_value_heads,
|
| 314 |
self.num_key_value_groups,
|
| 315 |
+
self.hidden_dim,
|
| 316 |
) = self._get_attention_parameters(base_attn, base_config)
|
| 317 |
self.scaling = self.head_dim**-0.5
|
| 318 |
|
|
|
|
| 322 |
operator_mode=operator_mode,
|
| 323 |
use_linear_checkpoint=use_linear_checkpoint,
|
| 324 |
recurrent_config=recurrent_config,
|
| 325 |
+
hidden_dim=self.hidden_dim,
|
| 326 |
num_heads=self.num_heads,
|
| 327 |
head_dim=self.head_dim,
|
| 328 |
num_key_value_heads=self.num_key_value_heads,
|
|
|
|
| 365 |
num_key_value_groups = getattr(base_attn, "num_key_value_groups", None) or (
|
| 366 |
num_heads // num_key_value_heads if num_heads and num_key_value_heads else 1
|
| 367 |
)
|
| 368 |
+
hidden_dim = getattr(base_config, "hidden_size", None) or head_dim * num_heads
|
| 369 |
return (
|
| 370 |
num_heads,
|
| 371 |
head_dim,
|
| 372 |
num_key_value_heads,
|
| 373 |
num_key_value_groups,
|
| 374 |
+
hidden_dim,
|
| 375 |
)
|
| 376 |
|
| 377 |
def _apply_shared_projections(
|
train_tptt.py
CHANGED
|
@@ -115,7 +115,7 @@ class LiZACallback(TrainerCallback):
|
|
| 115 |
if mag_weight is not None and logs is not None:
|
| 116 |
logs["mag_weight"] = float(mag_weight)
|
| 117 |
if disable_linear_attn is not None and logs is not None:
|
| 118 |
-
logs["disable_linear_attn"] =
|
| 119 |
|
| 120 |
|
| 121 |
def ensure_int(value: Union[int, tuple, list]) -> int:
|
|
|
|
| 115 |
if mag_weight is not None and logs is not None:
|
| 116 |
logs["mag_weight"] = float(mag_weight)
|
| 117 |
if disable_linear_attn is not None and logs is not None:
|
| 118 |
+
logs["disable_linear_attn"] = bool(disable_linear_attn)
|
| 119 |
|
| 120 |
|
| 121 |
def ensure_int(value: Union[int, tuple, list]) -> int:
|