Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- function-calling
|
| 5 |
+
---
|
| 6 |
+
|
| 7 |
+
# Fireworks Function Calling (FireFunction) Model V1
|
| 8 |
+
|
| 9 |
+
FireFunction is a state-of-the-art function calling model with a commercially viable license.
|
| 10 |
+
|
| 11 |
+
💡 The model is hosted on the [Fireworks](https://fireworks.ai/models/fireworks/firefunction-v1) platform, offering blazing fast inference and API compatible with [OpenAI function calling](https://platform.openai.com/docs/guides/function-calling).
|
| 12 |
+
```sh
|
| 13 |
+
OPENAI_API_BASE=https://api.fireworks.ai/inference/v1
|
| 14 |
+
OPENAI_API_KEY=<YOUR_FIREWORKS_API_KEY>
|
| 15 |
+
MODEL=accounts/fireworks/models/firefunction-v1
|
| 16 |
+
```
|
| 17 |
+
|
| 18 |
+
## Intended Use and Limitations
|
| 19 |
+
|
| 20 |
+
### Primary Use
|
| 21 |
+
Although the model was trained on a variety of tasks, it performs best on:
|
| 22 |
+
* single-turn request routing to a function picked from a pool of up to 20 function specs.
|
| 23 |
+
* structured information extraction.
|
| 24 |
+
|
| 25 |
+
### Out-of-Scope Use
|
| 26 |
+
The model was not optimized for the following use cases:
|
| 27 |
+
* general multi-turn chat,
|
| 28 |
+
* parallel and nested function calls in a single response. These can be broken into multiple messages.
|
| 29 |
+
|
| 30 |
+
## How to use the model
|
| 31 |
+
|
| 32 |
+
```python
|
| 33 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 34 |
+
import json
|
| 35 |
+
|
| 36 |
+
device = "cuda" # the device to load the model onto
|
| 37 |
+
|
| 38 |
+
model = AutoModelForCausalLM.from_pretrained("fireworks-ai/firefunction-v1")
|
| 39 |
+
tokenizer = AutoTokenizer.from_pretrained("fireworks-ai/firefunction-v1")
|
| 40 |
+
|
| 41 |
+
function_spec = [
|
| 42 |
+
{
|
| 43 |
+
"name": "get_stock_price",
|
| 44 |
+
"description": "Get the current stock price",
|
| 45 |
+
"parameters": {
|
| 46 |
+
"type": "object",
|
| 47 |
+
"properties": {
|
| 48 |
+
"symbol": {
|
| 49 |
+
"type": "string",
|
| 50 |
+
"description": "The stock symbol, e.g. AAPL, GOOG"
|
| 51 |
+
}
|
| 52 |
+
},
|
| 53 |
+
"required": [
|
| 54 |
+
"symbol"
|
| 55 |
+
]
|
| 56 |
+
}
|
| 57 |
+
},
|
| 58 |
+
{
|
| 59 |
+
"name": "check_word_anagram",
|
| 60 |
+
"description": "Check if two words are anagrams of each other",
|
| 61 |
+
"parameters": {
|
| 62 |
+
"type": "object",
|
| 63 |
+
"properties": {
|
| 64 |
+
"word1": {
|
| 65 |
+
"type": "string",
|
| 66 |
+
"description": "The first word"
|
| 67 |
+
},
|
| 68 |
+
"word2": {
|
| 69 |
+
"type": "string",
|
| 70 |
+
"description": "The second word"
|
| 71 |
+
}
|
| 72 |
+
},
|
| 73 |
+
"required": [
|
| 74 |
+
"word1",
|
| 75 |
+
"word2"
|
| 76 |
+
]
|
| 77 |
+
}
|
| 78 |
+
}
|
| 79 |
+
]
|
| 80 |
+
functions = json.dumps(functions, indent=4)
|
| 81 |
+
|
| 82 |
+
messages = [
|
| 83 |
+
{'role': 'functions', 'content': functions},
|
| 84 |
+
{'role': 'system', 'content': 'You are a helpful assistant with access to functions. Use them if required.'},
|
| 85 |
+
{'role': 'user', 'content': 'Hi, can you tell me the current stock price of AAPL?'}
|
| 86 |
+
]
|
| 87 |
+
|
| 88 |
+
encoded = tokenizer.apply_chat_template(messages, return_tensors="pt")
|
| 89 |
+
|
| 90 |
+
model_inputs = encodeds.to(device)
|
| 91 |
+
model.to(device)
|
| 92 |
+
|
| 93 |
+
generated_ids = model.generate(model_inputs, max_new_tokens=1000, do_sample=True)
|
| 94 |
+
decoded = tokenizer.batch_decode(generated_ids)
|
| 95 |
+
print(decoded[0])
|
| 96 |
+
```
|