--- tags: - text-generation - lstm - tensorflow library_name: tensorflow pipeline_tag: text-generation --- # LSTM Text Generation Model This model was trained using TensorFlow/Keras for financial article generation tasks. ## Model Details - **Model Type**: LSTM - **Framework**: TensorFlow/Keras - **Task**: Text Generation - **Vocabulary Size**: 41376 - **Architecture**: Long Short-Term Memory (LSTM) ## Usage ```python from huggingface_hub import snapshot_download import tensorflow as tf import json import pickle import numpy as np # Download model files model_path = snapshot_download(repo_id="firobeid/L4_LSTM_financial_article_generator") # Load the LSTM model model = tf.keras.models.load_model(f"{model_path}/lstm_model") # Load tokenizer try: # Try JSON format first with open(f"{model_path}/tokenizer.json", 'r', encoding='utf-8') as f: tokenizer_json = f.read() tokenizer = tf.keras.preprocessing.text.tokenizer_from_json(tokenizer_json) except FileNotFoundError: # Fallback to pickle format with open(f"{model_path}/tokenizer.pkl", 'rb') as f: tokenizer = pickle.load(f) # Text generation function def generate_text(input_text, num_words=10): # Preprocess input X = np.array(tokenizer.texts_to_sequences([input_text])) - 1 # Generate predictions output_text = [] for i in range(num_words): y_proba = model.predict(X, verbose=0)[0] pred_word_ind = np.argmax(y_proba, axis=-1) + 1 pred_word = tokenizer.index_word[pred_word_ind[-1]] input_text += ' ' + pred_word output_text.append(pred_word) X = np.array(tokenizer.texts_to_sequences([input_text])) - 1 return ' '.join(output_text) # Example usage # Start with these tags: , , , , result = generate_text(" The future of artificial intelligence", num_words=15) print(result) ``` ## Training This model was trained on text data using LSTM architecture for next-word prediction. ## Limitations - Model performance depends on training data quality and size - Generated text may not always be coherent for longer sequences - Model architecture is optimized for the specific vocabulary it was trained on