Update README.md
Browse files
README.md
CHANGED
|
@@ -9,11 +9,11 @@ datasets:
|
|
| 9 |
inference: false
|
| 10 |
---
|
| 11 |
|
| 12 |
-
##
|
| 13 |
|
| 14 |
-
This is the standard 4-class NER model for
|
| 15 |
|
| 16 |
-
F1-Score: **
|
| 17 |
|
| 18 |
Predicts 4 tags:
|
| 19 |
|
|
@@ -37,10 +37,10 @@ from flair.data import Sentence
|
|
| 37 |
from flair.models import SequenceTagger
|
| 38 |
|
| 39 |
# load tagger
|
| 40 |
-
tagger = SequenceTagger.load("flair/ner-
|
| 41 |
|
| 42 |
# make example sentence
|
| 43 |
-
sentence = Sentence("George Washington
|
| 44 |
|
| 45 |
# predict NER tags
|
| 46 |
tagger.predict(sentence)
|
|
@@ -58,11 +58,11 @@ for entity in sentence.get_spans('ner'):
|
|
| 58 |
|
| 59 |
This yields the following output:
|
| 60 |
```
|
| 61 |
-
Span [1,2]: "George Washington" [− Labels: PER (0.
|
| 62 |
-
Span [
|
| 63 |
```
|
| 64 |
|
| 65 |
-
So, the entities "*George Washington*" (labeled as a **person**) and "*Washington*" (labeled as a **location**) are found in the sentence "*George Washington
|
| 66 |
|
| 67 |
|
| 68 |
---
|
|
@@ -73,11 +73,11 @@ The following Flair script was used to train this model:
|
|
| 73 |
|
| 74 |
```python
|
| 75 |
from flair.data import Corpus
|
| 76 |
-
from flair.datasets import
|
| 77 |
from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings
|
| 78 |
|
| 79 |
# 1. get the corpus
|
| 80 |
-
corpus: Corpus =
|
| 81 |
|
| 82 |
# 2. what tag do we want to predict?
|
| 83 |
tag_type = 'ner'
|
|
@@ -89,13 +89,13 @@ tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
|
|
| 89 |
embedding_types = [
|
| 90 |
|
| 91 |
# GloVe embeddings
|
| 92 |
-
WordEmbeddings('
|
| 93 |
|
| 94 |
# contextual string embeddings, forward
|
| 95 |
-
FlairEmbeddings('
|
| 96 |
|
| 97 |
# contextual string embeddings, backward
|
| 98 |
-
FlairEmbeddings('
|
| 99 |
]
|
| 100 |
|
| 101 |
# embedding stack consists of Flair and GloVe embeddings
|
|
@@ -115,7 +115,7 @@ from flair.trainers import ModelTrainer
|
|
| 115 |
trainer = ModelTrainer(tagger, corpus)
|
| 116 |
|
| 117 |
# 7. run training
|
| 118 |
-
trainer.train('resources/taggers/ner-
|
| 119 |
train_with_dev=True,
|
| 120 |
max_epochs=150)
|
| 121 |
```
|
|
|
|
| 9 |
inference: false
|
| 10 |
---
|
| 11 |
|
| 12 |
+
## French NER in Flair (default model)
|
| 13 |
|
| 14 |
+
This is the standard 4-class NER model for French that ships with [Flair](https://github.com/flairNLP/flair/).
|
| 15 |
|
| 16 |
+
F1-Score: **90,61** (WikiNER)
|
| 17 |
|
| 18 |
Predicts 4 tags:
|
| 19 |
|
|
|
|
| 37 |
from flair.models import SequenceTagger
|
| 38 |
|
| 39 |
# load tagger
|
| 40 |
+
tagger = SequenceTagger.load("flair/ner-french")
|
| 41 |
|
| 42 |
# make example sentence
|
| 43 |
+
sentence = Sentence("George Washington est allé à Washington")
|
| 44 |
|
| 45 |
# predict NER tags
|
| 46 |
tagger.predict(sentence)
|
|
|
|
| 58 |
|
| 59 |
This yields the following output:
|
| 60 |
```
|
| 61 |
+
Span [1,2]: "George Washington" [− Labels: PER (0.7394)]
|
| 62 |
+
Span [6]: "Washington" [− Labels: LOC (0.9161)]
|
| 63 |
```
|
| 64 |
|
| 65 |
+
So, the entities "*George Washington*" (labeled as a **person**) and "*Washington*" (labeled as a **location**) are found in the sentence "*George Washington est allé à Washington*".
|
| 66 |
|
| 67 |
|
| 68 |
---
|
|
|
|
| 73 |
|
| 74 |
```python
|
| 75 |
from flair.data import Corpus
|
| 76 |
+
from flair.datasets import WIKINER_FRENCH
|
| 77 |
from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings
|
| 78 |
|
| 79 |
# 1. get the corpus
|
| 80 |
+
corpus: Corpus = WIKINER_FRENCH()
|
| 81 |
|
| 82 |
# 2. what tag do we want to predict?
|
| 83 |
tag_type = 'ner'
|
|
|
|
| 89 |
embedding_types = [
|
| 90 |
|
| 91 |
# GloVe embeddings
|
| 92 |
+
WordEmbeddings('fr'),
|
| 93 |
|
| 94 |
# contextual string embeddings, forward
|
| 95 |
+
FlairEmbeddings('fr-forward'),
|
| 96 |
|
| 97 |
# contextual string embeddings, backward
|
| 98 |
+
FlairEmbeddings('fr-backward'),
|
| 99 |
]
|
| 100 |
|
| 101 |
# embedding stack consists of Flair and GloVe embeddings
|
|
|
|
| 115 |
trainer = ModelTrainer(tagger, corpus)
|
| 116 |
|
| 117 |
# 7. run training
|
| 118 |
+
trainer.train('resources/taggers/ner-french',
|
| 119 |
train_with_dev=True,
|
| 120 |
max_epochs=150)
|
| 121 |
```
|