initial commit
Browse files- README.md +158 -0
- loss.tsv +21 -0
- pytorch_model.bin +3 -0
- training.log +892 -0
README.md
ADDED
|
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
tags:
|
| 3 |
+
- flair
|
| 4 |
+
- token-classification
|
| 5 |
+
- sequence-tagger-model
|
| 6 |
+
language: de
|
| 7 |
+
datasets:
|
| 8 |
+
- conll2003
|
| 9 |
+
inference: false
|
| 10 |
+
---
|
| 11 |
+
|
| 12 |
+
## German NER in Flair (large model)
|
| 13 |
+
|
| 14 |
+
This is the large 4-class NER model for German that ships with [Flair](https://github.com/flairNLP/flair/).
|
| 15 |
+
|
| 16 |
+
F1-Score: **94,36** (CoNLL-03)
|
| 17 |
+
|
| 18 |
+
**! This model only works with Flair version 0.8 (will be released in the next few days) !**
|
| 19 |
+
|
| 20 |
+
Predicts 4 tags:
|
| 21 |
+
|
| 22 |
+
| **tag** | **meaning** |
|
| 23 |
+
|---------------------------------|-----------|
|
| 24 |
+
| PER | person name |
|
| 25 |
+
| LOC | location name |
|
| 26 |
+
| ORG | organization name |
|
| 27 |
+
| MISC | other name |
|
| 28 |
+
|
| 29 |
+
Based on [document-level XLM-R embeddings](https://www.aclweb.org/anthology/C18-1139/).
|
| 30 |
+
|
| 31 |
+
---
|
| 32 |
+
|
| 33 |
+
### Demo: How to use in Flair
|
| 34 |
+
|
| 35 |
+
Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`)
|
| 36 |
+
|
| 37 |
+
```python
|
| 38 |
+
from flair.data import Sentence
|
| 39 |
+
from flair.models import SequenceTagger
|
| 40 |
+
|
| 41 |
+
# load tagger
|
| 42 |
+
tagger = SequenceTagger.load("flair/ner-german-large")
|
| 43 |
+
|
| 44 |
+
# make example sentence
|
| 45 |
+
sentence = Sentence("George Washington went to Washington")
|
| 46 |
+
|
| 47 |
+
# predict NER tags
|
| 48 |
+
tagger.predict(sentence)
|
| 49 |
+
|
| 50 |
+
# print sentence
|
| 51 |
+
print(sentence)
|
| 52 |
+
|
| 53 |
+
# print predicted NER spans
|
| 54 |
+
print('The following NER tags are found:')
|
| 55 |
+
# iterate over entities and print
|
| 56 |
+
for entity in sentence.get_spans('ner'):
|
| 57 |
+
print(entity)
|
| 58 |
+
|
| 59 |
+
```
|
| 60 |
+
|
| 61 |
+
This yields the following output:
|
| 62 |
+
```
|
| 63 |
+
Span [1,2]: "George Washington" [− Labels: PER (1.0)]
|
| 64 |
+
Span [5]: "Washington" [− Labels: LOC (1.0)]
|
| 65 |
+
```
|
| 66 |
+
|
| 67 |
+
So, the entities "*George Washington*" (labeled as a **person**) and "*Washington*" (labeled as a **location**) are found in the sentence "*George Washington went to Washington*".
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
---
|
| 71 |
+
|
| 72 |
+
### Training: Script to train this model
|
| 73 |
+
|
| 74 |
+
The following Flair script was used to train this model:
|
| 75 |
+
|
| 76 |
+
```python
|
| 77 |
+
import torch
|
| 78 |
+
|
| 79 |
+
# 1. get the corpus
|
| 80 |
+
from flair.datasets import CONLL_03_GERMAN
|
| 81 |
+
|
| 82 |
+
corpus = CONLL_03_GERMAN()
|
| 83 |
+
|
| 84 |
+
# 2. what tag do we want to predict?
|
| 85 |
+
tag_type = 'ner'
|
| 86 |
+
|
| 87 |
+
# 3. make the tag dictionary from the corpus
|
| 88 |
+
tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
|
| 89 |
+
|
| 90 |
+
# 4. initialize fine-tuneable transformer embeddings WITH document context
|
| 91 |
+
from flair.embeddings import TransformerWordEmbeddings
|
| 92 |
+
|
| 93 |
+
embeddings = TransformerWordEmbeddings(
|
| 94 |
+
model='xlm-roberta-large',
|
| 95 |
+
layers="-1",
|
| 96 |
+
subtoken_pooling="first",
|
| 97 |
+
fine_tune=True,
|
| 98 |
+
use_context=True,
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
# 5. initialize bare-bones sequence tagger (no CRF, no RNN, no reprojection)
|
| 102 |
+
from flair.models import SequenceTagger
|
| 103 |
+
|
| 104 |
+
tagger = SequenceTagger(
|
| 105 |
+
hidden_size=256,
|
| 106 |
+
embeddings=embeddings,
|
| 107 |
+
tag_dictionary=tag_dictionary,
|
| 108 |
+
tag_type='ner',
|
| 109 |
+
use_crf=False,
|
| 110 |
+
use_rnn=False,
|
| 111 |
+
reproject_embeddings=False,
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
# 6. initialize trainer with AdamW optimizer
|
| 115 |
+
from flair.trainers import ModelTrainer
|
| 116 |
+
|
| 117 |
+
trainer = ModelTrainer(tagger, corpus, optimizer=torch.optim.AdamW)
|
| 118 |
+
|
| 119 |
+
# 7. run training with XLM parameters (20 epochs, small LR)
|
| 120 |
+
from torch.optim.lr_scheduler import OneCycleLR
|
| 121 |
+
|
| 122 |
+
trainer.train('resources/taggers/ner-german-large',
|
| 123 |
+
learning_rate=5.0e-6,
|
| 124 |
+
mini_batch_size=4,
|
| 125 |
+
mini_batch_chunk_size=1,
|
| 126 |
+
max_epochs=20,
|
| 127 |
+
scheduler=OneCycleLR,
|
| 128 |
+
embeddings_storage_mode='none',
|
| 129 |
+
weight_decay=0.,
|
| 130 |
+
)
|
| 131 |
+
|
| 132 |
+
)
|
| 133 |
+
```
|
| 134 |
+
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
---
|
| 138 |
+
|
| 139 |
+
### Cite
|
| 140 |
+
|
| 141 |
+
Please cite the following paper when using this model.
|
| 142 |
+
|
| 143 |
+
```
|
| 144 |
+
@misc{schweter2020flert,
|
| 145 |
+
title={FLERT: Document-Level Features for Named Entity Recognition},
|
| 146 |
+
author={Stefan Schweter and Alan Akbik},
|
| 147 |
+
year={2020},
|
| 148 |
+
eprint={2011.06993},
|
| 149 |
+
archivePrefix={arXiv},
|
| 150 |
+
primaryClass={cs.CL}
|
| 151 |
+
}
|
| 152 |
+
```
|
| 153 |
+
|
| 154 |
+
---
|
| 155 |
+
|
| 156 |
+
### Issues?
|
| 157 |
+
|
| 158 |
+
The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).
|
loss.tsv
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
EPOCH TIMESTAMP BAD_EPOCHS LEARNING_RATE TRAIN_LOSS
|
| 2 |
+
1 16:51:59 4 0.0000 0.2866137816264941
|
| 3 |
+
2 17:16:36 4 0.0000 0.19963635197194995
|
| 4 |
+
3 17:41:09 4 0.0000 0.19381841593759824
|
| 5 |
+
4 18:05:44 4 0.0000 0.16904323373543453
|
| 6 |
+
5 18:30:18 4 0.0000 0.17083178105798114
|
| 7 |
+
6 18:54:35 4 0.0000 0.16211920515636655
|
| 8 |
+
7 19:18:47 4 0.0000 0.16189787430929792
|
| 9 |
+
8 19:42:57 4 0.0000 0.15914436206804433
|
| 10 |
+
9 20:07:08 4 0.0000 0.1469039810866205
|
| 11 |
+
10 20:31:16 4 0.0000 0.1492166711907655
|
| 12 |
+
11 20:55:24 4 0.0000 0.15147419168516288
|
| 13 |
+
12 21:19:32 4 0.0000 0.13647247537528812
|
| 14 |
+
13 21:43:54 4 0.0000 0.14614263093116467
|
| 15 |
+
14 22:08:30 4 0.0000 0.13674926033805127
|
| 16 |
+
15 22:33:01 4 0.0000 0.1387276056972103
|
| 17 |
+
16 22:57:29 4 0.0000 0.13758350506155864
|
| 18 |
+
17 23:21:41 4 0.0000 0.13729583443464166
|
| 19 |
+
18 23:45:55 4 0.0000 0.13997356167795372
|
| 20 |
+
19 00:10:06 4 0.0000 0.13157929521994233
|
| 21 |
+
20 00:34:21 4 0.0000 0.1353108691912222
|
pytorch_model.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:abf4313719a9b40a2daa419d066fa1fae405827bc126bde5ecd283b068b34790
|
| 3 |
+
size 2239866697
|
training.log
ADDED
|
@@ -0,0 +1,892 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
2021-01-15 16:27:19,924 ----------------------------------------------------------------------------------------------------
|
| 2 |
+
2021-01-15 16:27:19,927 Model: "SequenceTagger(
|
| 3 |
+
(embeddings): TransformerWordEmbeddings(
|
| 4 |
+
(model): XLMRobertaModel(
|
| 5 |
+
(embeddings): RobertaEmbeddings(
|
| 6 |
+
(word_embeddings): Embedding(250002, 1024, padding_idx=1)
|
| 7 |
+
(position_embeddings): Embedding(514, 1024, padding_idx=1)
|
| 8 |
+
(token_type_embeddings): Embedding(1, 1024)
|
| 9 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 10 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 11 |
+
)
|
| 12 |
+
(encoder): RobertaEncoder(
|
| 13 |
+
(layer): ModuleList(
|
| 14 |
+
(0): RobertaLayer(
|
| 15 |
+
(attention): RobertaAttention(
|
| 16 |
+
(self): RobertaSelfAttention(
|
| 17 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 18 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 19 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 20 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 21 |
+
)
|
| 22 |
+
(output): RobertaSelfOutput(
|
| 23 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 24 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 25 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 26 |
+
)
|
| 27 |
+
)
|
| 28 |
+
(intermediate): RobertaIntermediate(
|
| 29 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 30 |
+
)
|
| 31 |
+
(output): RobertaOutput(
|
| 32 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 33 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 34 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 35 |
+
)
|
| 36 |
+
)
|
| 37 |
+
(1): RobertaLayer(
|
| 38 |
+
(attention): RobertaAttention(
|
| 39 |
+
(self): RobertaSelfAttention(
|
| 40 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 41 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 42 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 43 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 44 |
+
)
|
| 45 |
+
(output): RobertaSelfOutput(
|
| 46 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 47 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 48 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 49 |
+
)
|
| 50 |
+
)
|
| 51 |
+
(intermediate): RobertaIntermediate(
|
| 52 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 53 |
+
)
|
| 54 |
+
(output): RobertaOutput(
|
| 55 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 56 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 57 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 58 |
+
)
|
| 59 |
+
)
|
| 60 |
+
(2): RobertaLayer(
|
| 61 |
+
(attention): RobertaAttention(
|
| 62 |
+
(self): RobertaSelfAttention(
|
| 63 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 64 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 65 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 66 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 67 |
+
)
|
| 68 |
+
(output): RobertaSelfOutput(
|
| 69 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 70 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 71 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 72 |
+
)
|
| 73 |
+
)
|
| 74 |
+
(intermediate): RobertaIntermediate(
|
| 75 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 76 |
+
)
|
| 77 |
+
(output): RobertaOutput(
|
| 78 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 79 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 80 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 81 |
+
)
|
| 82 |
+
)
|
| 83 |
+
(3): RobertaLayer(
|
| 84 |
+
(attention): RobertaAttention(
|
| 85 |
+
(self): RobertaSelfAttention(
|
| 86 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 87 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 88 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 89 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 90 |
+
)
|
| 91 |
+
(output): RobertaSelfOutput(
|
| 92 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 93 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 94 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 95 |
+
)
|
| 96 |
+
)
|
| 97 |
+
(intermediate): RobertaIntermediate(
|
| 98 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 99 |
+
)
|
| 100 |
+
(output): RobertaOutput(
|
| 101 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 102 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 103 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 104 |
+
)
|
| 105 |
+
)
|
| 106 |
+
(4): RobertaLayer(
|
| 107 |
+
(attention): RobertaAttention(
|
| 108 |
+
(self): RobertaSelfAttention(
|
| 109 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 110 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 111 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 112 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 113 |
+
)
|
| 114 |
+
(output): RobertaSelfOutput(
|
| 115 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 116 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 117 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 118 |
+
)
|
| 119 |
+
)
|
| 120 |
+
(intermediate): RobertaIntermediate(
|
| 121 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 122 |
+
)
|
| 123 |
+
(output): RobertaOutput(
|
| 124 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 125 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 126 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 127 |
+
)
|
| 128 |
+
)
|
| 129 |
+
(5): RobertaLayer(
|
| 130 |
+
(attention): RobertaAttention(
|
| 131 |
+
(self): RobertaSelfAttention(
|
| 132 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 133 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 134 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 135 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 136 |
+
)
|
| 137 |
+
(output): RobertaSelfOutput(
|
| 138 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 139 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 140 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 141 |
+
)
|
| 142 |
+
)
|
| 143 |
+
(intermediate): RobertaIntermediate(
|
| 144 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 145 |
+
)
|
| 146 |
+
(output): RobertaOutput(
|
| 147 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 148 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 149 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 150 |
+
)
|
| 151 |
+
)
|
| 152 |
+
(6): RobertaLayer(
|
| 153 |
+
(attention): RobertaAttention(
|
| 154 |
+
(self): RobertaSelfAttention(
|
| 155 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 156 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 157 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 158 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 159 |
+
)
|
| 160 |
+
(output): RobertaSelfOutput(
|
| 161 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 162 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 163 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 164 |
+
)
|
| 165 |
+
)
|
| 166 |
+
(intermediate): RobertaIntermediate(
|
| 167 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 168 |
+
)
|
| 169 |
+
(output): RobertaOutput(
|
| 170 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 171 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 172 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 173 |
+
)
|
| 174 |
+
)
|
| 175 |
+
(7): RobertaLayer(
|
| 176 |
+
(attention): RobertaAttention(
|
| 177 |
+
(self): RobertaSelfAttention(
|
| 178 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 179 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 180 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 181 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 182 |
+
)
|
| 183 |
+
(output): RobertaSelfOutput(
|
| 184 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 185 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 186 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 187 |
+
)
|
| 188 |
+
)
|
| 189 |
+
(intermediate): RobertaIntermediate(
|
| 190 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 191 |
+
)
|
| 192 |
+
(output): RobertaOutput(
|
| 193 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 194 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 195 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 196 |
+
)
|
| 197 |
+
)
|
| 198 |
+
(8): RobertaLayer(
|
| 199 |
+
(attention): RobertaAttention(
|
| 200 |
+
(self): RobertaSelfAttention(
|
| 201 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 202 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 203 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 204 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 205 |
+
)
|
| 206 |
+
(output): RobertaSelfOutput(
|
| 207 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 208 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 209 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 210 |
+
)
|
| 211 |
+
)
|
| 212 |
+
(intermediate): RobertaIntermediate(
|
| 213 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 214 |
+
)
|
| 215 |
+
(output): RobertaOutput(
|
| 216 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 217 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 218 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 219 |
+
)
|
| 220 |
+
)
|
| 221 |
+
(9): RobertaLayer(
|
| 222 |
+
(attention): RobertaAttention(
|
| 223 |
+
(self): RobertaSelfAttention(
|
| 224 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 225 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 226 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 227 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 228 |
+
)
|
| 229 |
+
(output): RobertaSelfOutput(
|
| 230 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 231 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 232 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 233 |
+
)
|
| 234 |
+
)
|
| 235 |
+
(intermediate): RobertaIntermediate(
|
| 236 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 237 |
+
)
|
| 238 |
+
(output): RobertaOutput(
|
| 239 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 240 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 241 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 242 |
+
)
|
| 243 |
+
)
|
| 244 |
+
(10): RobertaLayer(
|
| 245 |
+
(attention): RobertaAttention(
|
| 246 |
+
(self): RobertaSelfAttention(
|
| 247 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 248 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 249 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 250 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 251 |
+
)
|
| 252 |
+
(output): RobertaSelfOutput(
|
| 253 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 254 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 255 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 256 |
+
)
|
| 257 |
+
)
|
| 258 |
+
(intermediate): RobertaIntermediate(
|
| 259 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 260 |
+
)
|
| 261 |
+
(output): RobertaOutput(
|
| 262 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 263 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 264 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 265 |
+
)
|
| 266 |
+
)
|
| 267 |
+
(11): RobertaLayer(
|
| 268 |
+
(attention): RobertaAttention(
|
| 269 |
+
(self): RobertaSelfAttention(
|
| 270 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 271 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 272 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 273 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 274 |
+
)
|
| 275 |
+
(output): RobertaSelfOutput(
|
| 276 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 277 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 278 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 279 |
+
)
|
| 280 |
+
)
|
| 281 |
+
(intermediate): RobertaIntermediate(
|
| 282 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 283 |
+
)
|
| 284 |
+
(output): RobertaOutput(
|
| 285 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 286 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 287 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 288 |
+
)
|
| 289 |
+
)
|
| 290 |
+
(12): RobertaLayer(
|
| 291 |
+
(attention): RobertaAttention(
|
| 292 |
+
(self): RobertaSelfAttention(
|
| 293 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 294 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 295 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 296 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 297 |
+
)
|
| 298 |
+
(output): RobertaSelfOutput(
|
| 299 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 300 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 301 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 302 |
+
)
|
| 303 |
+
)
|
| 304 |
+
(intermediate): RobertaIntermediate(
|
| 305 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 306 |
+
)
|
| 307 |
+
(output): RobertaOutput(
|
| 308 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 309 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 310 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 311 |
+
)
|
| 312 |
+
)
|
| 313 |
+
(13): RobertaLayer(
|
| 314 |
+
(attention): RobertaAttention(
|
| 315 |
+
(self): RobertaSelfAttention(
|
| 316 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 317 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 318 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 319 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 320 |
+
)
|
| 321 |
+
(output): RobertaSelfOutput(
|
| 322 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 323 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 324 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 325 |
+
)
|
| 326 |
+
)
|
| 327 |
+
(intermediate): RobertaIntermediate(
|
| 328 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 329 |
+
)
|
| 330 |
+
(output): RobertaOutput(
|
| 331 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 332 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 333 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 334 |
+
)
|
| 335 |
+
)
|
| 336 |
+
(14): RobertaLayer(
|
| 337 |
+
(attention): RobertaAttention(
|
| 338 |
+
(self): RobertaSelfAttention(
|
| 339 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 340 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 341 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 342 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 343 |
+
)
|
| 344 |
+
(output): RobertaSelfOutput(
|
| 345 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 346 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 347 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 348 |
+
)
|
| 349 |
+
)
|
| 350 |
+
(intermediate): RobertaIntermediate(
|
| 351 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 352 |
+
)
|
| 353 |
+
(output): RobertaOutput(
|
| 354 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 355 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 356 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 357 |
+
)
|
| 358 |
+
)
|
| 359 |
+
(15): RobertaLayer(
|
| 360 |
+
(attention): RobertaAttention(
|
| 361 |
+
(self): RobertaSelfAttention(
|
| 362 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 363 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 364 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 365 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 366 |
+
)
|
| 367 |
+
(output): RobertaSelfOutput(
|
| 368 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 369 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 370 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 371 |
+
)
|
| 372 |
+
)
|
| 373 |
+
(intermediate): RobertaIntermediate(
|
| 374 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 375 |
+
)
|
| 376 |
+
(output): RobertaOutput(
|
| 377 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 378 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 379 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 380 |
+
)
|
| 381 |
+
)
|
| 382 |
+
(16): RobertaLayer(
|
| 383 |
+
(attention): RobertaAttention(
|
| 384 |
+
(self): RobertaSelfAttention(
|
| 385 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 386 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 387 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 388 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 389 |
+
)
|
| 390 |
+
(output): RobertaSelfOutput(
|
| 391 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 392 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 393 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 394 |
+
)
|
| 395 |
+
)
|
| 396 |
+
(intermediate): RobertaIntermediate(
|
| 397 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 398 |
+
)
|
| 399 |
+
(output): RobertaOutput(
|
| 400 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 401 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 402 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 403 |
+
)
|
| 404 |
+
)
|
| 405 |
+
(17): RobertaLayer(
|
| 406 |
+
(attention): RobertaAttention(
|
| 407 |
+
(self): RobertaSelfAttention(
|
| 408 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 409 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 410 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 411 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 412 |
+
)
|
| 413 |
+
(output): RobertaSelfOutput(
|
| 414 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 415 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 416 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 417 |
+
)
|
| 418 |
+
)
|
| 419 |
+
(intermediate): RobertaIntermediate(
|
| 420 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 421 |
+
)
|
| 422 |
+
(output): RobertaOutput(
|
| 423 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 424 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 425 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 426 |
+
)
|
| 427 |
+
)
|
| 428 |
+
(18): RobertaLayer(
|
| 429 |
+
(attention): RobertaAttention(
|
| 430 |
+
(self): RobertaSelfAttention(
|
| 431 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 432 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 433 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 434 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 435 |
+
)
|
| 436 |
+
(output): RobertaSelfOutput(
|
| 437 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 438 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 439 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 440 |
+
)
|
| 441 |
+
)
|
| 442 |
+
(intermediate): RobertaIntermediate(
|
| 443 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 444 |
+
)
|
| 445 |
+
(output): RobertaOutput(
|
| 446 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 447 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 448 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 449 |
+
)
|
| 450 |
+
)
|
| 451 |
+
(19): RobertaLayer(
|
| 452 |
+
(attention): RobertaAttention(
|
| 453 |
+
(self): RobertaSelfAttention(
|
| 454 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 455 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 456 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 457 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 458 |
+
)
|
| 459 |
+
(output): RobertaSelfOutput(
|
| 460 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 461 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 462 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 463 |
+
)
|
| 464 |
+
)
|
| 465 |
+
(intermediate): RobertaIntermediate(
|
| 466 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 467 |
+
)
|
| 468 |
+
(output): RobertaOutput(
|
| 469 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 470 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 471 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 472 |
+
)
|
| 473 |
+
)
|
| 474 |
+
(20): RobertaLayer(
|
| 475 |
+
(attention): RobertaAttention(
|
| 476 |
+
(self): RobertaSelfAttention(
|
| 477 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 478 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 479 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 480 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 481 |
+
)
|
| 482 |
+
(output): RobertaSelfOutput(
|
| 483 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 484 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 485 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 486 |
+
)
|
| 487 |
+
)
|
| 488 |
+
(intermediate): RobertaIntermediate(
|
| 489 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 490 |
+
)
|
| 491 |
+
(output): RobertaOutput(
|
| 492 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 493 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 494 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 495 |
+
)
|
| 496 |
+
)
|
| 497 |
+
(21): RobertaLayer(
|
| 498 |
+
(attention): RobertaAttention(
|
| 499 |
+
(self): RobertaSelfAttention(
|
| 500 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 501 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 502 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 503 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 504 |
+
)
|
| 505 |
+
(output): RobertaSelfOutput(
|
| 506 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 507 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 508 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 509 |
+
)
|
| 510 |
+
)
|
| 511 |
+
(intermediate): RobertaIntermediate(
|
| 512 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 513 |
+
)
|
| 514 |
+
(output): RobertaOutput(
|
| 515 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 516 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 517 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 518 |
+
)
|
| 519 |
+
)
|
| 520 |
+
(22): RobertaLayer(
|
| 521 |
+
(attention): RobertaAttention(
|
| 522 |
+
(self): RobertaSelfAttention(
|
| 523 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 524 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 525 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 526 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 527 |
+
)
|
| 528 |
+
(output): RobertaSelfOutput(
|
| 529 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 530 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 531 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 532 |
+
)
|
| 533 |
+
)
|
| 534 |
+
(intermediate): RobertaIntermediate(
|
| 535 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 536 |
+
)
|
| 537 |
+
(output): RobertaOutput(
|
| 538 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 539 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 540 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 541 |
+
)
|
| 542 |
+
)
|
| 543 |
+
(23): RobertaLayer(
|
| 544 |
+
(attention): RobertaAttention(
|
| 545 |
+
(self): RobertaSelfAttention(
|
| 546 |
+
(query): Linear(in_features=1024, out_features=1024, bias=True)
|
| 547 |
+
(key): Linear(in_features=1024, out_features=1024, bias=True)
|
| 548 |
+
(value): Linear(in_features=1024, out_features=1024, bias=True)
|
| 549 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 550 |
+
)
|
| 551 |
+
(output): RobertaSelfOutput(
|
| 552 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 553 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 554 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 555 |
+
)
|
| 556 |
+
)
|
| 557 |
+
(intermediate): RobertaIntermediate(
|
| 558 |
+
(dense): Linear(in_features=1024, out_features=4096, bias=True)
|
| 559 |
+
)
|
| 560 |
+
(output): RobertaOutput(
|
| 561 |
+
(dense): Linear(in_features=4096, out_features=1024, bias=True)
|
| 562 |
+
(LayerNorm): LayerNorm((1024,), eps=1e-05, elementwise_affine=True)
|
| 563 |
+
(dropout): Dropout(p=0.1, inplace=False)
|
| 564 |
+
)
|
| 565 |
+
)
|
| 566 |
+
)
|
| 567 |
+
)
|
| 568 |
+
(pooler): RobertaPooler(
|
| 569 |
+
(dense): Linear(in_features=1024, out_features=1024, bias=True)
|
| 570 |
+
(activation): Tanh()
|
| 571 |
+
)
|
| 572 |
+
)
|
| 573 |
+
)
|
| 574 |
+
(word_dropout): WordDropout(p=0.05)
|
| 575 |
+
(locked_dropout): LockedDropout(p=0.5)
|
| 576 |
+
(linear): Linear(in_features=1024, out_features=20, bias=True)
|
| 577 |
+
(beta): 1.0
|
| 578 |
+
(weights): None
|
| 579 |
+
(weight_tensor) None
|
| 580 |
+
)"
|
| 581 |
+
2021-01-15 16:27:19,928 ----------------------------------------------------------------------------------------------------
|
| 582 |
+
2021-01-15 16:27:19,928 Corpus: "Corpus: 12705 train + 3068 dev + 3160 test sentences"
|
| 583 |
+
2021-01-15 16:27:19,928 ----------------------------------------------------------------------------------------------------
|
| 584 |
+
2021-01-15 16:27:19,928 Parameters:
|
| 585 |
+
2021-01-15 16:27:19,928 - learning_rate: "5e-06"
|
| 586 |
+
2021-01-15 16:27:19,928 - mini_batch_size: "4"
|
| 587 |
+
2021-01-15 16:27:19,928 - patience: "3"
|
| 588 |
+
2021-01-15 16:27:19,928 - anneal_factor: "0.5"
|
| 589 |
+
2021-01-15 16:27:19,928 - max_epochs: "20"
|
| 590 |
+
2021-01-15 16:27:19,928 - shuffle: "True"
|
| 591 |
+
2021-01-15 16:27:19,928 - train_with_dev: "True"
|
| 592 |
+
2021-01-15 16:27:19,928 - batch_growth_annealing: "False"
|
| 593 |
+
2021-01-15 16:27:19,928 ----------------------------------------------------------------------------------------------------
|
| 594 |
+
2021-01-15 16:27:19,928 Model training base path: "resources/contextdrop/flert-de-ft+dev-xlm-roberta-large-context+drop-64-True-42"
|
| 595 |
+
2021-01-15 16:27:19,928 ----------------------------------------------------------------------------------------------------
|
| 596 |
+
2021-01-15 16:27:19,929 Device: cuda:2
|
| 597 |
+
2021-01-15 16:27:19,929 ----------------------------------------------------------------------------------------------------
|
| 598 |
+
2021-01-15 16:27:19,929 Embeddings storage mode: none
|
| 599 |
+
2021-01-15 16:27:19,939 ----------------------------------------------------------------------------------------------------
|
| 600 |
+
2021-01-15 16:29:48,177 epoch 1 - iter 394/3944 - loss 0.58149384 - samples/sec: 10.63 - lr: 0.000005
|
| 601 |
+
2021-01-15 16:32:16,470 epoch 1 - iter 788/3944 - loss 0.43146001 - samples/sec: 10.63 - lr: 0.000005
|
| 602 |
+
2021-01-15 16:34:43,836 epoch 1 - iter 1182/3944 - loss 0.38010955 - samples/sec: 10.70 - lr: 0.000005
|
| 603 |
+
2021-01-15 16:37:11,698 epoch 1 - iter 1576/3944 - loss 0.34431028 - samples/sec: 10.66 - lr: 0.000005
|
| 604 |
+
2021-01-15 16:39:39,747 epoch 1 - iter 1970/3944 - loss 0.32744939 - samples/sec: 10.65 - lr: 0.000005
|
| 605 |
+
2021-01-15 16:42:07,631 epoch 1 - iter 2364/3944 - loss 0.31857823 - samples/sec: 10.66 - lr: 0.000005
|
| 606 |
+
2021-01-15 16:44:34,485 epoch 1 - iter 2758/3944 - loss 0.30456838 - samples/sec: 10.73 - lr: 0.000005
|
| 607 |
+
2021-01-15 16:47:02,394 epoch 1 - iter 3152/3944 - loss 0.29905511 - samples/sec: 10.66 - lr: 0.000005
|
| 608 |
+
2021-01-15 16:49:29,868 epoch 1 - iter 3546/3944 - loss 0.29295683 - samples/sec: 10.69 - lr: 0.000005
|
| 609 |
+
2021-01-15 16:51:58,152 epoch 1 - iter 3940/3944 - loss 0.28678117 - samples/sec: 10.63 - lr: 0.000005
|
| 610 |
+
2021-01-15 16:51:59,459 ----------------------------------------------------------------------------------------------------
|
| 611 |
+
2021-01-15 16:51:59,459 EPOCH 1 done: loss 0.2866 - lr 0.0000050
|
| 612 |
+
2021-01-15 16:51:59,459 BAD EPOCHS (no improvement): 4
|
| 613 |
+
2021-01-15 16:51:59,462 ----------------------------------------------------------------------------------------------------
|
| 614 |
+
2021-01-15 16:54:27,337 epoch 2 - iter 394/3944 - loss 0.23763366 - samples/sec: 10.66 - lr: 0.000005
|
| 615 |
+
2021-01-15 16:56:55,082 epoch 2 - iter 788/3944 - loss 0.20691177 - samples/sec: 10.67 - lr: 0.000005
|
| 616 |
+
2021-01-15 16:59:22,869 epoch 2 - iter 1182/3944 - loss 0.21072023 - samples/sec: 10.66 - lr: 0.000005
|
| 617 |
+
2021-01-15 17:01:50,770 epoch 2 - iter 1576/3944 - loss 0.20705774 - samples/sec: 10.66 - lr: 0.000005
|
| 618 |
+
2021-01-15 17:04:18,029 epoch 2 - iter 1970/3944 - loss 0.20345128 - samples/sec: 10.70 - lr: 0.000005
|
| 619 |
+
2021-01-15 17:06:45,050 epoch 2 - iter 2364/3944 - loss 0.19762390 - samples/sec: 10.72 - lr: 0.000005
|
| 620 |
+
2021-01-15 17:09:11,995 epoch 2 - iter 2758/3944 - loss 0.20206661 - samples/sec: 10.73 - lr: 0.000005
|
| 621 |
+
2021-01-15 17:11:39,892 epoch 2 - iter 3152/3944 - loss 0.19768991 - samples/sec: 10.66 - lr: 0.000005
|
| 622 |
+
2021-01-15 17:14:07,315 epoch 2 - iter 3546/3944 - loss 0.20115805 - samples/sec: 10.69 - lr: 0.000005
|
| 623 |
+
2021-01-15 17:16:34,784 epoch 2 - iter 3940/3944 - loss 0.19983876 - samples/sec: 10.69 - lr: 0.000005
|
| 624 |
+
2021-01-15 17:16:36,073 ----------------------------------------------------------------------------------------------------
|
| 625 |
+
2021-01-15 17:16:36,074 EPOCH 2 done: loss 0.1996 - lr 0.0000049
|
| 626 |
+
2021-01-15 17:16:36,074 BAD EPOCHS (no improvement): 4
|
| 627 |
+
2021-01-15 17:16:36,077 ----------------------------------------------------------------------------------------------------
|
| 628 |
+
2021-01-15 17:19:03,268 epoch 3 - iter 394/3944 - loss 0.16475767 - samples/sec: 10.71 - lr: 0.000005
|
| 629 |
+
2021-01-15 17:21:30,430 epoch 3 - iter 788/3944 - loss 0.16467943 - samples/sec: 10.71 - lr: 0.000005
|
| 630 |
+
2021-01-15 17:23:57,785 epoch 3 - iter 1182/3944 - loss 0.16820842 - samples/sec: 10.70 - lr: 0.000005
|
| 631 |
+
2021-01-15 17:26:25,077 epoch 3 - iter 1576/3944 - loss 0.17111347 - samples/sec: 10.70 - lr: 0.000005
|
| 632 |
+
2021-01-15 17:28:51,818 epoch 3 - iter 1970/3944 - loss 0.17649180 - samples/sec: 10.74 - lr: 0.000005
|
| 633 |
+
2021-01-15 17:31:18,679 epoch 3 - iter 2364/3944 - loss 0.18734800 - samples/sec: 10.73 - lr: 0.000005
|
| 634 |
+
2021-01-15 17:33:45,680 epoch 3 - iter 2758/3944 - loss 0.18971106 - samples/sec: 10.72 - lr: 0.000005
|
| 635 |
+
2021-01-15 17:36:13,246 epoch 3 - iter 3152/3944 - loss 0.18746164 - samples/sec: 10.68 - lr: 0.000005
|
| 636 |
+
2021-01-15 17:38:40,672 epoch 3 - iter 3546/3944 - loss 0.19218287 - samples/sec: 10.69 - lr: 0.000005
|
| 637 |
+
2021-01-15 17:41:07,957 epoch 3 - iter 3940/3944 - loss 0.19381799 - samples/sec: 10.70 - lr: 0.000005
|
| 638 |
+
2021-01-15 17:41:09,257 ----------------------------------------------------------------------------------------------------
|
| 639 |
+
2021-01-15 17:41:09,257 EPOCH 3 done: loss 0.1938 - lr 0.0000047
|
| 640 |
+
2021-01-15 17:41:09,257 BAD EPOCHS (no improvement): 4
|
| 641 |
+
2021-01-15 17:41:09,260 ----------------------------------------------------------------------------------------------------
|
| 642 |
+
2021-01-15 17:43:36,593 epoch 4 - iter 394/3944 - loss 0.16488209 - samples/sec: 10.70 - lr: 0.000005
|
| 643 |
+
2021-01-15 17:46:04,133 epoch 4 - iter 788/3944 - loss 0.17473605 - samples/sec: 10.68 - lr: 0.000005
|
| 644 |
+
2021-01-15 17:48:31,440 epoch 4 - iter 1182/3944 - loss 0.16738039 - samples/sec: 10.70 - lr: 0.000005
|
| 645 |
+
2021-01-15 17:50:58,858 epoch 4 - iter 1576/3944 - loss 0.16596805 - samples/sec: 10.69 - lr: 0.000005
|
| 646 |
+
2021-01-15 17:53:26,260 epoch 4 - iter 1970/3944 - loss 0.16483490 - samples/sec: 10.69 - lr: 0.000005
|
| 647 |
+
2021-01-15 17:55:53,072 epoch 4 - iter 2364/3944 - loss 0.16752558 - samples/sec: 10.74 - lr: 0.000005
|
| 648 |
+
2021-01-15 17:58:19,944 epoch 4 - iter 2758/3944 - loss 0.16537132 - samples/sec: 10.73 - lr: 0.000005
|
| 649 |
+
2021-01-15 18:00:47,459 epoch 4 - iter 3152/3944 - loss 0.16501133 - samples/sec: 10.68 - lr: 0.000005
|
| 650 |
+
2021-01-15 18:03:15,474 epoch 4 - iter 3546/3944 - loss 0.16726116 - samples/sec: 10.65 - lr: 0.000005
|
| 651 |
+
2021-01-15 18:05:43,265 epoch 4 - iter 3940/3944 - loss 0.16914137 - samples/sec: 10.66 - lr: 0.000005
|
| 652 |
+
2021-01-15 18:05:44,543 ----------------------------------------------------------------------------------------------------
|
| 653 |
+
2021-01-15 18:05:44,543 EPOCH 4 done: loss 0.1690 - lr 0.0000045
|
| 654 |
+
2021-01-15 18:05:44,543 BAD EPOCHS (no improvement): 4
|
| 655 |
+
2021-01-15 18:05:44,547 ----------------------------------------------------------------------------------------------------
|
| 656 |
+
2021-01-15 18:08:12,011 epoch 5 - iter 394/3944 - loss 0.15833616 - samples/sec: 10.69 - lr: 0.000004
|
| 657 |
+
2021-01-15 18:10:38,832 epoch 5 - iter 788/3944 - loss 0.16551527 - samples/sec: 10.74 - lr: 0.000004
|
| 658 |
+
2021-01-15 18:13:06,451 epoch 5 - iter 1182/3944 - loss 0.17177677 - samples/sec: 10.68 - lr: 0.000004
|
| 659 |
+
2021-01-15 18:15:34,493 epoch 5 - iter 1576/3944 - loss 0.17301128 - samples/sec: 10.65 - lr: 0.000004
|
| 660 |
+
2021-01-15 18:18:03,239 epoch 5 - iter 1970/3944 - loss 0.17650116 - samples/sec: 10.60 - lr: 0.000004
|
| 661 |
+
2021-01-15 18:20:32,247 epoch 5 - iter 2364/3944 - loss 0.17631064 - samples/sec: 10.58 - lr: 0.000004
|
| 662 |
+
2021-01-15 18:22:59,227 epoch 5 - iter 2758/3944 - loss 0.17537379 - samples/sec: 10.72 - lr: 0.000004
|
| 663 |
+
2021-01-15 18:25:24,556 epoch 5 - iter 3152/3944 - loss 0.17617518 - samples/sec: 10.85 - lr: 0.000004
|
| 664 |
+
2021-01-15 18:27:50,096 epoch 5 - iter 3546/3944 - loss 0.17367857 - samples/sec: 10.83 - lr: 0.000004
|
| 665 |
+
2021-01-15 18:30:16,704 epoch 5 - iter 3940/3944 - loss 0.17093901 - samples/sec: 10.75 - lr: 0.000004
|
| 666 |
+
2021-01-15 18:30:18,004 ----------------------------------------------------------------------------------------------------
|
| 667 |
+
2021-01-15 18:30:18,004 EPOCH 5 done: loss 0.1708 - lr 0.0000043
|
| 668 |
+
2021-01-15 18:30:18,004 BAD EPOCHS (no improvement): 4
|
| 669 |
+
2021-01-15 18:30:18,007 ----------------------------------------------------------------------------------------------------
|
| 670 |
+
2021-01-15 18:32:42,968 epoch 6 - iter 394/3944 - loss 0.17698825 - samples/sec: 10.87 - lr: 0.000004
|
| 671 |
+
2021-01-15 18:35:08,371 epoch 6 - iter 788/3944 - loss 0.16713416 - samples/sec: 10.84 - lr: 0.000004
|
| 672 |
+
2021-01-15 18:37:34,014 epoch 6 - iter 1182/3944 - loss 0.16902562 - samples/sec: 10.82 - lr: 0.000004
|
| 673 |
+
2021-01-15 18:40:00,144 epoch 6 - iter 1576/3944 - loss 0.16574844 - samples/sec: 10.79 - lr: 0.000004
|
| 674 |
+
2021-01-15 18:42:26,534 epoch 6 - iter 1970/3944 - loss 0.16657012 - samples/sec: 10.77 - lr: 0.000004
|
| 675 |
+
2021-01-15 18:44:52,613 epoch 6 - iter 2364/3944 - loss 0.16641916 - samples/sec: 10.79 - lr: 0.000004
|
| 676 |
+
2021-01-15 18:47:17,983 epoch 6 - iter 2758/3944 - loss 0.16274268 - samples/sec: 10.84 - lr: 0.000004
|
| 677 |
+
2021-01-15 18:49:43,878 epoch 6 - iter 3152/3944 - loss 0.16172776 - samples/sec: 10.80 - lr: 0.000004
|
| 678 |
+
2021-01-15 18:52:09,331 epoch 6 - iter 3546/3944 - loss 0.16291188 - samples/sec: 10.84 - lr: 0.000004
|
| 679 |
+
2021-01-15 18:54:34,272 epoch 6 - iter 3940/3944 - loss 0.16208591 - samples/sec: 10.87 - lr: 0.000004
|
| 680 |
+
2021-01-15 18:54:35,553 ----------------------------------------------------------------------------------------------------
|
| 681 |
+
2021-01-15 18:54:35,553 EPOCH 6 done: loss 0.1621 - lr 0.0000040
|
| 682 |
+
2021-01-15 18:54:35,553 BAD EPOCHS (no improvement): 4
|
| 683 |
+
2021-01-15 18:54:35,556 ----------------------------------------------------------------------------------------------------
|
| 684 |
+
2021-01-15 18:57:00,031 epoch 7 - iter 394/3944 - loss 0.15674837 - samples/sec: 10.91 - lr: 0.000004
|
| 685 |
+
2021-01-15 18:59:25,217 epoch 7 - iter 788/3944 - loss 0.16222971 - samples/sec: 10.86 - lr: 0.000004
|
| 686 |
+
2021-01-15 19:01:50,483 epoch 7 - iter 1182/3944 - loss 0.17608659 - samples/sec: 10.85 - lr: 0.000004
|
| 687 |
+
2021-01-15 19:04:15,644 epoch 7 - iter 1576/3944 - loss 0.17042676 - samples/sec: 10.86 - lr: 0.000004
|
| 688 |
+
2021-01-15 19:06:40,626 epoch 7 - iter 1970/3944 - loss 0.16835536 - samples/sec: 10.87 - lr: 0.000004
|
| 689 |
+
2021-01-15 19:09:06,269 epoch 7 - iter 2364/3944 - loss 0.17005717 - samples/sec: 10.82 - lr: 0.000004
|
| 690 |
+
2021-01-15 19:11:30,455 epoch 7 - iter 2758/3944 - loss 0.16986731 - samples/sec: 10.93 - lr: 0.000004
|
| 691 |
+
2021-01-15 19:13:55,363 epoch 7 - iter 3152/3944 - loss 0.16607768 - samples/sec: 10.88 - lr: 0.000004
|
| 692 |
+
2021-01-15 19:16:20,669 epoch 7 - iter 3546/3944 - loss 0.16408475 - samples/sec: 10.85 - lr: 0.000004
|
| 693 |
+
2021-01-15 19:18:46,350 epoch 7 - iter 3940/3944 - loss 0.16187247 - samples/sec: 10.82 - lr: 0.000004
|
| 694 |
+
2021-01-15 19:18:47,632 ----------------------------------------------------------------------------------------------------
|
| 695 |
+
2021-01-15 19:18:47,632 EPOCH 7 done: loss 0.1619 - lr 0.0000036
|
| 696 |
+
2021-01-15 19:18:47,632 BAD EPOCHS (no improvement): 4
|
| 697 |
+
2021-01-15 19:18:47,635 ----------------------------------------------------------------------------------------------------
|
| 698 |
+
2021-01-15 19:21:13,232 epoch 8 - iter 394/3944 - loss 0.15860862 - samples/sec: 10.83 - lr: 0.000004
|
| 699 |
+
2021-01-15 19:23:37,769 epoch 8 - iter 788/3944 - loss 0.16488914 - samples/sec: 10.90 - lr: 0.000004
|
| 700 |
+
2021-01-15 19:26:03,243 epoch 8 - iter 1182/3944 - loss 0.16503533 - samples/sec: 10.83 - lr: 0.000004
|
| 701 |
+
2021-01-15 19:28:28,171 epoch 8 - iter 1576/3944 - loss 0.16139434 - samples/sec: 10.88 - lr: 0.000003
|
| 702 |
+
2021-01-15 19:30:53,669 epoch 8 - iter 1970/3944 - loss 0.15723985 - samples/sec: 10.83 - lr: 0.000003
|
| 703 |
+
2021-01-15 19:33:18,230 epoch 8 - iter 2364/3944 - loss 0.15695920 - samples/sec: 10.90 - lr: 0.000003
|
| 704 |
+
2021-01-15 19:35:43,271 epoch 8 - iter 2758/3944 - loss 0.15942351 - samples/sec: 10.87 - lr: 0.000003
|
| 705 |
+
2021-01-15 19:38:07,861 epoch 8 - iter 3152/3944 - loss 0.16047035 - samples/sec: 10.90 - lr: 0.000003
|
| 706 |
+
2021-01-15 19:40:31,578 epoch 8 - iter 3546/3944 - loss 0.15915561 - samples/sec: 10.97 - lr: 0.000003
|
| 707 |
+
2021-01-15 19:42:56,291 epoch 8 - iter 3940/3944 - loss 0.15889894 - samples/sec: 10.89 - lr: 0.000003
|
| 708 |
+
2021-01-15 19:42:57,531 ----------------------------------------------------------------------------------------------------
|
| 709 |
+
2021-01-15 19:42:57,531 EPOCH 8 done: loss 0.1591 - lr 0.0000033
|
| 710 |
+
2021-01-15 19:42:57,531 BAD EPOCHS (no improvement): 4
|
| 711 |
+
2021-01-15 19:42:57,534 ----------------------------------------------------------------------------------------------------
|
| 712 |
+
2021-01-15 19:45:22,077 epoch 9 - iter 394/3944 - loss 0.15628960 - samples/sec: 10.90 - lr: 0.000003
|
| 713 |
+
2021-01-15 19:47:46,787 epoch 9 - iter 788/3944 - loss 0.15383703 - samples/sec: 10.89 - lr: 0.000003
|
| 714 |
+
2021-01-15 19:50:11,703 epoch 9 - iter 1182/3944 - loss 0.14587839 - samples/sec: 10.88 - lr: 0.000003
|
| 715 |
+
2021-01-15 19:52:36,604 epoch 9 - iter 1576/3944 - loss 0.14536078 - samples/sec: 10.88 - lr: 0.000003
|
| 716 |
+
2021-01-15 19:55:01,857 epoch 9 - iter 1970/3944 - loss 0.14842223 - samples/sec: 10.85 - lr: 0.000003
|
| 717 |
+
2021-01-15 19:57:26,976 epoch 9 - iter 2364/3944 - loss 0.14781136 - samples/sec: 10.86 - lr: 0.000003
|
| 718 |
+
2021-01-15 19:59:52,570 epoch 9 - iter 2758/3944 - loss 0.14980740 - samples/sec: 10.83 - lr: 0.000003
|
| 719 |
+
2021-01-15 20:02:16,766 epoch 9 - iter 3152/3944 - loss 0.15147019 - samples/sec: 10.93 - lr: 0.000003
|
| 720 |
+
2021-01-15 20:04:41,587 epoch 9 - iter 3546/3944 - loss 0.14992780 - samples/sec: 10.88 - lr: 0.000003
|
| 721 |
+
2021-01-15 20:07:07,065 epoch 9 - iter 3940/3944 - loss 0.14688711 - samples/sec: 10.83 - lr: 0.000003
|
| 722 |
+
2021-01-15 20:07:08,315 ----------------------------------------------------------------------------------------------------
|
| 723 |
+
2021-01-15 20:07:08,315 EPOCH 9 done: loss 0.1469 - lr 0.0000029
|
| 724 |
+
2021-01-15 20:07:08,315 BAD EPOCHS (no improvement): 4
|
| 725 |
+
2021-01-15 20:07:08,318 ----------------------------------------------------------------------------------------------------
|
| 726 |
+
2021-01-15 20:09:33,307 epoch 10 - iter 394/3944 - loss 0.15646665 - samples/sec: 10.87 - lr: 0.000003
|
| 727 |
+
2021-01-15 20:11:57,958 epoch 10 - iter 788/3944 - loss 0.15117971 - samples/sec: 10.90 - lr: 0.000003
|
| 728 |
+
2021-01-15 20:14:23,257 epoch 10 - iter 1182/3944 - loss 0.15319049 - samples/sec: 10.85 - lr: 0.000003
|
| 729 |
+
2021-01-15 20:16:47,405 epoch 10 - iter 1576/3944 - loss 0.14632406 - samples/sec: 10.93 - lr: 0.000003
|
| 730 |
+
2021-01-15 20:19:13,077 epoch 10 - iter 1970/3944 - loss 0.14880268 - samples/sec: 10.82 - lr: 0.000003
|
| 731 |
+
2021-01-15 20:21:37,974 epoch 10 - iter 2364/3944 - loss 0.14738769 - samples/sec: 10.88 - lr: 0.000003
|
| 732 |
+
2021-01-15 20:24:02,312 epoch 10 - iter 2758/3944 - loss 0.14992138 - samples/sec: 10.92 - lr: 0.000003
|
| 733 |
+
2021-01-15 20:26:26,416 epoch 10 - iter 3152/3944 - loss 0.14923992 - samples/sec: 10.94 - lr: 0.000003
|
| 734 |
+
2021-01-15 20:28:50,624 epoch 10 - iter 3546/3944 - loss 0.14988541 - samples/sec: 10.93 - lr: 0.000003
|
| 735 |
+
2021-01-15 20:31:15,232 epoch 10 - iter 3940/3944 - loss 0.14923823 - samples/sec: 10.90 - lr: 0.000003
|
| 736 |
+
2021-01-15 20:31:16,444 ----------------------------------------------------------------------------------------------------
|
| 737 |
+
2021-01-15 20:31:16,445 EPOCH 10 done: loss 0.1492 - lr 0.0000025
|
| 738 |
+
2021-01-15 20:31:16,445 BAD EPOCHS (no improvement): 4
|
| 739 |
+
2021-01-15 20:31:16,447 ----------------------------------------------------------------------------------------------------
|
| 740 |
+
2021-01-15 20:33:41,402 epoch 11 - iter 394/3944 - loss 0.16146740 - samples/sec: 10.87 - lr: 0.000002
|
| 741 |
+
2021-01-15 20:36:05,837 epoch 11 - iter 788/3944 - loss 0.16349808 - samples/sec: 10.91 - lr: 0.000002
|
| 742 |
+
2021-01-15 20:38:30,901 epoch 11 - iter 1182/3944 - loss 0.15115769 - samples/sec: 10.87 - lr: 0.000002
|
| 743 |
+
2021-01-15 20:40:55,438 epoch 11 - iter 1576/3944 - loss 0.14705117 - samples/sec: 10.90 - lr: 0.000002
|
| 744 |
+
2021-01-15 20:43:20,378 epoch 11 - iter 1970/3944 - loss 0.14991591 - samples/sec: 10.87 - lr: 0.000002
|
| 745 |
+
2021-01-15 20:45:45,151 epoch 11 - iter 2364/3944 - loss 0.15439655 - samples/sec: 10.89 - lr: 0.000002
|
| 746 |
+
2021-01-15 20:48:09,941 epoch 11 - iter 2758/3944 - loss 0.15580945 - samples/sec: 10.89 - lr: 0.000002
|
| 747 |
+
2021-01-15 20:50:34,492 epoch 11 - iter 3152/3944 - loss 0.15253824 - samples/sec: 10.90 - lr: 0.000002
|
| 748 |
+
2021-01-15 20:52:58,700 epoch 11 - iter 3546/3944 - loss 0.15092320 - samples/sec: 10.93 - lr: 0.000002
|
| 749 |
+
2021-01-15 20:55:23,174 epoch 11 - iter 3940/3944 - loss 0.15157769 - samples/sec: 10.91 - lr: 0.000002
|
| 750 |
+
2021-01-15 20:55:24,418 ----------------------------------------------------------------------------------------------------
|
| 751 |
+
2021-01-15 20:55:24,418 EPOCH 11 done: loss 0.1515 - lr 0.0000021
|
| 752 |
+
2021-01-15 20:55:24,418 BAD EPOCHS (no improvement): 4
|
| 753 |
+
2021-01-15 20:55:24,421 ----------------------------------------------------------------------------------------------------
|
| 754 |
+
2021-01-15 20:57:49,024 epoch 12 - iter 394/3944 - loss 0.13353775 - samples/sec: 10.90 - lr: 0.000002
|
| 755 |
+
2021-01-15 21:00:13,363 epoch 12 - iter 788/3944 - loss 0.12481125 - samples/sec: 10.92 - lr: 0.000002
|
| 756 |
+
2021-01-15 21:02:37,921 epoch 12 - iter 1182/3944 - loss 0.13012621 - samples/sec: 10.90 - lr: 0.000002
|
| 757 |
+
2021-01-15 21:05:02,587 epoch 12 - iter 1576/3944 - loss 0.13179293 - samples/sec: 10.90 - lr: 0.000002
|
| 758 |
+
2021-01-15 21:07:27,496 epoch 12 - iter 1970/3944 - loss 0.13504151 - samples/sec: 10.88 - lr: 0.000002
|
| 759 |
+
2021-01-15 21:09:52,384 epoch 12 - iter 2364/3944 - loss 0.13639646 - samples/sec: 10.88 - lr: 0.000002
|
| 760 |
+
2021-01-15 21:12:16,819 epoch 12 - iter 2758/3944 - loss 0.13538659 - samples/sec: 10.91 - lr: 0.000002
|
| 761 |
+
2021-01-15 21:14:41,429 epoch 12 - iter 3152/3944 - loss 0.13401163 - samples/sec: 10.90 - lr: 0.000002
|
| 762 |
+
2021-01-15 21:17:06,129 epoch 12 - iter 3546/3944 - loss 0.13558124 - samples/sec: 10.89 - lr: 0.000002
|
| 763 |
+
2021-01-15 21:19:30,783 epoch 12 - iter 3940/3944 - loss 0.13632296 - samples/sec: 10.90 - lr: 0.000002
|
| 764 |
+
2021-01-15 21:19:32,074 ----------------------------------------------------------------------------------------------------
|
| 765 |
+
2021-01-15 21:19:32,075 EPOCH 12 done: loss 0.1365 - lr 0.0000017
|
| 766 |
+
2021-01-15 21:19:32,075 BAD EPOCHS (no improvement): 4
|
| 767 |
+
2021-01-15 21:19:32,086 ----------------------------------------------------------------------------------------------------
|
| 768 |
+
2021-01-15 21:21:56,456 epoch 13 - iter 394/3944 - loss 0.13665988 - samples/sec: 10.92 - lr: 0.000002
|
| 769 |
+
2021-01-15 21:24:21,213 epoch 13 - iter 788/3944 - loss 0.13434678 - samples/sec: 10.89 - lr: 0.000002
|
| 770 |
+
2021-01-15 21:26:45,716 epoch 13 - iter 1182/3944 - loss 0.14362465 - samples/sec: 10.91 - lr: 0.000002
|
| 771 |
+
2021-01-15 21:29:10,027 epoch 13 - iter 1576/3944 - loss 0.14463862 - samples/sec: 10.92 - lr: 0.000002
|
| 772 |
+
2021-01-15 21:31:35,804 epoch 13 - iter 1970/3944 - loss 0.14445941 - samples/sec: 10.81 - lr: 0.000002
|
| 773 |
+
2021-01-15 21:34:02,830 epoch 13 - iter 2364/3944 - loss 0.14383136 - samples/sec: 10.72 - lr: 0.000002
|
| 774 |
+
2021-01-15 21:36:29,998 epoch 13 - iter 2758/3944 - loss 0.14458719 - samples/sec: 10.71 - lr: 0.000001
|
| 775 |
+
2021-01-15 21:38:58,765 epoch 13 - iter 3152/3944 - loss 0.14583862 - samples/sec: 10.59 - lr: 0.000001
|
| 776 |
+
2021-01-15 21:41:27,066 epoch 13 - iter 3546/3944 - loss 0.14570568 - samples/sec: 10.63 - lr: 0.000001
|
| 777 |
+
2021-01-15 21:43:53,640 epoch 13 - iter 3940/3944 - loss 0.14616666 - samples/sec: 10.75 - lr: 0.000001
|
| 778 |
+
2021-01-15 21:43:54,933 ----------------------------------------------------------------------------------------------------
|
| 779 |
+
2021-01-15 21:43:54,933 EPOCH 13 done: loss 0.1461 - lr 0.0000014
|
| 780 |
+
2021-01-15 21:43:54,933 BAD EPOCHS (no improvement): 4
|
| 781 |
+
2021-01-15 21:43:54,953 ----------------------------------------------------------------------------------------------------
|
| 782 |
+
2021-01-15 21:46:22,842 epoch 14 - iter 394/3944 - loss 0.12543846 - samples/sec: 10.66 - lr: 0.000001
|
| 783 |
+
2021-01-15 21:48:49,756 epoch 14 - iter 788/3944 - loss 0.12854973 - samples/sec: 10.73 - lr: 0.000001
|
| 784 |
+
2021-01-15 21:51:16,782 epoch 14 - iter 1182/3944 - loss 0.12800828 - samples/sec: 10.72 - lr: 0.000001
|
| 785 |
+
2021-01-15 21:53:43,875 epoch 14 - iter 1576/3944 - loss 0.13018865 - samples/sec: 10.72 - lr: 0.000001
|
| 786 |
+
2021-01-15 21:56:11,947 epoch 14 - iter 1970/3944 - loss 0.13230140 - samples/sec: 10.64 - lr: 0.000001
|
| 787 |
+
2021-01-15 21:58:40,070 epoch 14 - iter 2364/3944 - loss 0.13276864 - samples/sec: 10.64 - lr: 0.000001
|
| 788 |
+
2021-01-15 22:01:07,197 epoch 14 - iter 2758/3944 - loss 0.13188423 - samples/sec: 10.71 - lr: 0.000001
|
| 789 |
+
2021-01-15 22:03:33,892 epoch 14 - iter 3152/3944 - loss 0.13622326 - samples/sec: 10.74 - lr: 0.000001
|
| 790 |
+
2021-01-15 22:06:01,226 epoch 14 - iter 3546/3944 - loss 0.13623591 - samples/sec: 10.70 - lr: 0.000001
|
| 791 |
+
2021-01-15 22:08:29,247 epoch 14 - iter 3940/3944 - loss 0.13681664 - samples/sec: 10.65 - lr: 0.000001
|
| 792 |
+
2021-01-15 22:08:30,571 ----------------------------------------------------------------------------------------------------
|
| 793 |
+
2021-01-15 22:08:30,571 EPOCH 14 done: loss 0.1367 - lr 0.0000010
|
| 794 |
+
2021-01-15 22:08:30,571 BAD EPOCHS (no improvement): 4
|
| 795 |
+
2021-01-15 22:08:30,619 ----------------------------------------------------------------------------------------------------
|
| 796 |
+
2021-01-15 22:10:58,784 epoch 15 - iter 394/3944 - loss 0.14687040 - samples/sec: 10.64 - lr: 0.000001
|
| 797 |
+
2021-01-15 22:13:25,824 epoch 15 - iter 788/3944 - loss 0.13773561 - samples/sec: 10.72 - lr: 0.000001
|
| 798 |
+
2021-01-15 22:15:52,774 epoch 15 - iter 1182/3944 - loss 0.13724811 - samples/sec: 10.73 - lr: 0.000001
|
| 799 |
+
2021-01-15 22:18:19,309 epoch 15 - iter 1576/3944 - loss 0.14105250 - samples/sec: 10.76 - lr: 0.000001
|
| 800 |
+
2021-01-15 22:20:46,418 epoch 15 - iter 1970/3944 - loss 0.13929364 - samples/sec: 10.71 - lr: 0.000001
|
| 801 |
+
2021-01-15 22:23:12,930 epoch 15 - iter 2364/3944 - loss 0.13891907 - samples/sec: 10.76 - lr: 0.000001
|
| 802 |
+
2021-01-15 22:25:40,051 epoch 15 - iter 2758/3944 - loss 0.13941754 - samples/sec: 10.71 - lr: 0.000001
|
| 803 |
+
2021-01-15 22:28:06,583 epoch 15 - iter 3152/3944 - loss 0.14071295 - samples/sec: 10.76 - lr: 0.000001
|
| 804 |
+
2021-01-15 22:30:32,954 epoch 15 - iter 3546/3944 - loss 0.13981342 - samples/sec: 10.77 - lr: 0.000001
|
| 805 |
+
2021-01-15 22:33:00,397 epoch 15 - iter 3940/3944 - loss 0.13880390 - samples/sec: 10.69 - lr: 0.000001
|
| 806 |
+
2021-01-15 22:33:01,714 ----------------------------------------------------------------------------------------------------
|
| 807 |
+
2021-01-15 22:33:01,715 EPOCH 15 done: loss 0.1387 - lr 0.0000007
|
| 808 |
+
2021-01-15 22:33:01,715 BAD EPOCHS (no improvement): 4
|
| 809 |
+
2021-01-15 22:33:01,718 ----------------------------------------------------------------------------------------------------
|
| 810 |
+
2021-01-15 22:35:29,035 epoch 16 - iter 394/3944 - loss 0.14291727 - samples/sec: 10.70 - lr: 0.000001
|
| 811 |
+
2021-01-15 22:37:56,417 epoch 16 - iter 788/3944 - loss 0.13149588 - samples/sec: 10.69 - lr: 0.000001
|
| 812 |
+
2021-01-15 22:40:23,990 epoch 16 - iter 1182/3944 - loss 0.13203036 - samples/sec: 10.68 - lr: 0.000001
|
| 813 |
+
2021-01-15 22:42:51,538 epoch 16 - iter 1576/3944 - loss 0.13134927 - samples/sec: 10.68 - lr: 0.000001
|
| 814 |
+
2021-01-15 22:45:19,113 epoch 16 - iter 1970/3944 - loss 0.13179903 - samples/sec: 10.68 - lr: 0.000001
|
| 815 |
+
2021-01-15 22:47:46,156 epoch 16 - iter 2364/3944 - loss 0.13354076 - samples/sec: 10.72 - lr: 0.000001
|
| 816 |
+
2021-01-15 22:50:13,300 epoch 16 - iter 2758/3944 - loss 0.13476940 - samples/sec: 10.71 - lr: 0.000001
|
| 817 |
+
2021-01-15 22:52:38,377 epoch 16 - iter 3152/3944 - loss 0.13497255 - samples/sec: 10.86 - lr: 0.000001
|
| 818 |
+
2021-01-15 22:55:03,400 epoch 16 - iter 3546/3944 - loss 0.13634147 - samples/sec: 10.87 - lr: 0.000001
|
| 819 |
+
2021-01-15 22:57:27,892 epoch 16 - iter 3940/3944 - loss 0.13727031 - samples/sec: 10.91 - lr: 0.000000
|
| 820 |
+
2021-01-15 22:57:29,178 ----------------------------------------------------------------------------------------------------
|
| 821 |
+
2021-01-15 22:57:29,178 EPOCH 16 done: loss 0.1376 - lr 0.0000005
|
| 822 |
+
2021-01-15 22:57:29,178 BAD EPOCHS (no improvement): 4
|
| 823 |
+
2021-01-15 22:57:29,181 ----------------------------------------------------------------------------------------------------
|
| 824 |
+
2021-01-15 22:59:53,548 epoch 17 - iter 394/3944 - loss 0.14524632 - samples/sec: 10.92 - lr: 0.000000
|
| 825 |
+
2021-01-15 23:02:18,357 epoch 17 - iter 788/3944 - loss 0.14652155 - samples/sec: 10.88 - lr: 0.000000
|
| 826 |
+
2021-01-15 23:04:43,610 epoch 17 - iter 1182/3944 - loss 0.13884438 - samples/sec: 10.85 - lr: 0.000000
|
| 827 |
+
2021-01-15 23:07:08,806 epoch 17 - iter 1576/3944 - loss 0.13549453 - samples/sec: 10.86 - lr: 0.000000
|
| 828 |
+
2021-01-15 23:09:34,317 epoch 17 - iter 1970/3944 - loss 0.13560330 - samples/sec: 10.83 - lr: 0.000000
|
| 829 |
+
2021-01-15 23:11:59,595 epoch 17 - iter 2364/3944 - loss 0.13972037 - samples/sec: 10.85 - lr: 0.000000
|
| 830 |
+
2021-01-15 23:14:24,656 epoch 17 - iter 2758/3944 - loss 0.14040167 - samples/sec: 10.87 - lr: 0.000000
|
| 831 |
+
2021-01-15 23:16:49,375 epoch 17 - iter 3152/3944 - loss 0.13946642 - samples/sec: 10.89 - lr: 0.000000
|
| 832 |
+
2021-01-15 23:19:15,069 epoch 17 - iter 3546/3944 - loss 0.13849877 - samples/sec: 10.82 - lr: 0.000000
|
| 833 |
+
2021-01-15 23:21:40,239 epoch 17 - iter 3940/3944 - loss 0.13743522 - samples/sec: 10.86 - lr: 0.000000
|
| 834 |
+
2021-01-15 23:21:41,530 ----------------------------------------------------------------------------------------------------
|
| 835 |
+
2021-01-15 23:21:41,530 EPOCH 17 done: loss 0.1373 - lr 0.0000003
|
| 836 |
+
2021-01-15 23:21:41,530 BAD EPOCHS (no improvement): 4
|
| 837 |
+
2021-01-15 23:21:41,533 ----------------------------------------------------------------------------------------------------
|
| 838 |
+
2021-01-15 23:24:07,941 epoch 18 - iter 394/3944 - loss 0.13214318 - samples/sec: 10.77 - lr: 0.000000
|
| 839 |
+
2021-01-15 23:26:34,009 epoch 18 - iter 788/3944 - loss 0.14259440 - samples/sec: 10.79 - lr: 0.000000
|
| 840 |
+
2021-01-15 23:29:00,116 epoch 18 - iter 1182/3944 - loss 0.13753739 - samples/sec: 10.79 - lr: 0.000000
|
| 841 |
+
2021-01-15 23:31:25,087 epoch 18 - iter 1576/3944 - loss 0.13957844 - samples/sec: 10.87 - lr: 0.000000
|
| 842 |
+
2021-01-15 23:33:50,076 epoch 18 - iter 1970/3944 - loss 0.13743370 - samples/sec: 10.87 - lr: 0.000000
|
| 843 |
+
2021-01-15 23:36:14,776 epoch 18 - iter 2364/3944 - loss 0.13970779 - samples/sec: 10.89 - lr: 0.000000
|
| 844 |
+
2021-01-15 23:38:38,473 epoch 18 - iter 2758/3944 - loss 0.13932537 - samples/sec: 10.97 - lr: 0.000000
|
| 845 |
+
2021-01-15 23:41:03,249 epoch 18 - iter 3152/3944 - loss 0.13745278 - samples/sec: 10.89 - lr: 0.000000
|
| 846 |
+
2021-01-15 23:43:28,499 epoch 18 - iter 3546/3944 - loss 0.13924606 - samples/sec: 10.85 - lr: 0.000000
|
| 847 |
+
2021-01-15 23:45:53,779 epoch 18 - iter 3940/3944 - loss 0.13920658 - samples/sec: 10.85 - lr: 0.000000
|
| 848 |
+
2021-01-15 23:45:55,039 ----------------------------------------------------------------------------------------------------
|
| 849 |
+
2021-01-15 23:45:55,040 EPOCH 18 done: loss 0.1400 - lr 0.0000001
|
| 850 |
+
2021-01-15 23:45:55,040 BAD EPOCHS (no improvement): 4
|
| 851 |
+
2021-01-15 23:45:55,060 ----------------------------------------------------------------------------------------------------
|
| 852 |
+
2021-01-15 23:48:19,848 epoch 19 - iter 394/3944 - loss 0.12011491 - samples/sec: 10.89 - lr: 0.000000
|
| 853 |
+
2021-01-15 23:50:45,410 epoch 19 - iter 788/3944 - loss 0.12712191 - samples/sec: 10.83 - lr: 0.000000
|
| 854 |
+
2021-01-15 23:53:10,309 epoch 19 - iter 1182/3944 - loss 0.12601271 - samples/sec: 10.88 - lr: 0.000000
|
| 855 |
+
2021-01-15 23:55:35,025 epoch 19 - iter 1576/3944 - loss 0.12838937 - samples/sec: 10.89 - lr: 0.000000
|
| 856 |
+
2021-01-15 23:57:59,862 epoch 19 - iter 1970/3944 - loss 0.13018004 - samples/sec: 10.88 - lr: 0.000000
|
| 857 |
+
2021-01-16 00:00:24,890 epoch 19 - iter 2364/3944 - loss 0.12867846 - samples/sec: 10.87 - lr: 0.000000
|
| 858 |
+
2021-01-16 00:02:49,627 epoch 19 - iter 2758/3944 - loss 0.12932283 - samples/sec: 10.89 - lr: 0.000000
|
| 859 |
+
2021-01-16 00:05:14,400 epoch 19 - iter 3152/3944 - loss 0.12859496 - samples/sec: 10.89 - lr: 0.000000
|
| 860 |
+
2021-01-16 00:07:39,476 epoch 19 - iter 3546/3944 - loss 0.12980219 - samples/sec: 10.86 - lr: 0.000000
|
| 861 |
+
2021-01-16 00:10:04,796 epoch 19 - iter 3940/3944 - loss 0.13157911 - samples/sec: 10.85 - lr: 0.000000
|
| 862 |
+
2021-01-16 00:10:06,033 ----------------------------------------------------------------------------------------------------
|
| 863 |
+
2021-01-16 00:10:06,033 EPOCH 19 done: loss 0.1316 - lr 0.0000000
|
| 864 |
+
2021-01-16 00:10:06,033 BAD EPOCHS (no improvement): 4
|
| 865 |
+
2021-01-16 00:10:06,036 ----------------------------------------------------------------------------------------------------
|
| 866 |
+
2021-01-16 00:12:31,453 epoch 20 - iter 394/3944 - loss 0.12043092 - samples/sec: 10.84 - lr: 0.000000
|
| 867 |
+
2021-01-16 00:14:56,680 epoch 20 - iter 788/3944 - loss 0.13192874 - samples/sec: 10.85 - lr: 0.000000
|
| 868 |
+
2021-01-16 00:17:21,816 epoch 20 - iter 1182/3944 - loss 0.13095020 - samples/sec: 10.86 - lr: 0.000000
|
| 869 |
+
2021-01-16 00:19:46,815 epoch 20 - iter 1576/3944 - loss 0.13423819 - samples/sec: 10.87 - lr: 0.000000
|
| 870 |
+
2021-01-16 00:22:12,079 epoch 20 - iter 1970/3944 - loss 0.13458985 - samples/sec: 10.85 - lr: 0.000000
|
| 871 |
+
2021-01-16 00:24:37,900 epoch 20 - iter 2364/3944 - loss 0.13241959 - samples/sec: 10.81 - lr: 0.000000
|
| 872 |
+
2021-01-16 00:27:03,059 epoch 20 - iter 2758/3944 - loss 0.13235752 - samples/sec: 10.86 - lr: 0.000000
|
| 873 |
+
2021-01-16 00:29:28,845 epoch 20 - iter 3152/3944 - loss 0.13390899 - samples/sec: 10.81 - lr: 0.000000
|
| 874 |
+
2021-01-16 00:31:54,866 epoch 20 - iter 3546/3944 - loss 0.13467390 - samples/sec: 10.79 - lr: 0.000000
|
| 875 |
+
2021-01-16 00:34:19,750 epoch 20 - iter 3940/3944 - loss 0.13514658 - samples/sec: 10.88 - lr: 0.000000
|
| 876 |
+
2021-01-16 00:34:21,013 ----------------------------------------------------------------------------------------------------
|
| 877 |
+
2021-01-16 00:34:21,013 EPOCH 20 done: loss 0.1353 - lr 0.0000000
|
| 878 |
+
2021-01-16 00:34:21,013 BAD EPOCHS (no improvement): 4
|
| 879 |
+
2021-01-16 00:34:59,015 ----------------------------------------------------------------------------------------------------
|
| 880 |
+
2021-01-16 00:34:59,015 Testing using best model ...
|
| 881 |
+
2021-01-16 00:36:54,780 0.9319 0.9145 0.9231
|
| 882 |
+
2021-01-16 00:36:54,780
|
| 883 |
+
Results:
|
| 884 |
+
- F1-score (micro) 0.9231
|
| 885 |
+
- F1-score (macro) 0.8691
|
| 886 |
+
|
| 887 |
+
By class:
|
| 888 |
+
LOC tp: 981 - fp: 62 - fn: 70 - precision: 0.9406 - recall: 0.9334 - f1-score: 0.9370
|
| 889 |
+
MISC tp: 128 - fp: 26 - fn: 78 - precision: 0.8312 - recall: 0.6214 - f1-score: 0.7111
|
| 890 |
+
ORG tp: 497 - fp: 87 - fn: 87 - precision: 0.8510 - recall: 0.8510 - f1-score: 0.8510
|
| 891 |
+
PER tp: 1184 - fp: 29 - fn: 26 - precision: 0.9761 - recall: 0.9785 - f1-score: 0.9773
|
| 892 |
+
2021-01-16 00:36:54,780 ----------------------------------------------------------------------------------------------------
|