Update handler.py
Browse files- handler.py +22 -34
handler.py
CHANGED
|
@@ -1,45 +1,33 @@
|
|
| 1 |
-
#Handler.py file needed
|
| 2 |
-
|
| 3 |
from PIL import Image
|
| 4 |
import torch
|
| 5 |
-
from transformers import
|
| 6 |
|
| 7 |
class ModelHandler:
|
| 8 |
def __init__(self):
|
| 9 |
-
|
| 10 |
-
self.
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
|
|
|
|
|
|
| 16 |
|
| 17 |
def preprocess(self, inputs):
|
| 18 |
-
#
|
| 19 |
-
image = Image.open(inputs[
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
text_context = inputs.get("text_context", "")
|
| 24 |
-
if text_context:
|
| 25 |
-
context_inputs = self.processor(text=text_context, return_tensors="pt").input_ids
|
| 26 |
-
else:
|
| 27 |
-
context_inputs = None
|
| 28 |
-
|
| 29 |
-
return pixel_values, context_inputs
|
| 30 |
|
| 31 |
-
def inference(self,
|
| 32 |
-
# Run inference on the
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
outputs = self.model.generate(pixel_values, input_ids=context_inputs)
|
| 36 |
-
else:
|
| 37 |
-
outputs = self.model.generate(pixel_values)
|
| 38 |
-
return outputs
|
| 39 |
|
| 40 |
-
def postprocess(self,
|
| 41 |
-
#
|
| 42 |
-
|
| 43 |
-
return {"digitized_text": decoded_text[0]}
|
| 44 |
|
| 45 |
service = ModelHandler()
|
|
|
|
|
|
|
|
|
|
| 1 |
from PIL import Image
|
| 2 |
import torch
|
| 3 |
+
from transformers import AutoModel, AutoTokenizer
|
| 4 |
|
| 5 |
class ModelHandler:
|
| 6 |
def __init__(self):
|
| 7 |
+
# Load the model and tokenizer with appropriate weights
|
| 8 |
+
self.model = AutoModel.from_pretrained(
|
| 9 |
+
'openbmb/MiniCPM-V-2_6',
|
| 10 |
+
trust_remote_code=True,
|
| 11 |
+
attn_implementation='sdpa',
|
| 12 |
+
torch_dtype=torch.bfloat16
|
| 13 |
+
).eval().cuda()
|
| 14 |
+
|
| 15 |
+
self.tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-V-2_6', trust_remote_code=True)
|
| 16 |
|
| 17 |
def preprocess(self, inputs):
|
| 18 |
+
# Preprocess image input
|
| 19 |
+
image = Image.open(inputs['image'].file).convert('RGB')
|
| 20 |
+
question = inputs.get("question", "What is in the image?")
|
| 21 |
+
msgs = [{'role': 'user', 'content': [image, question]}]
|
| 22 |
+
return msgs
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
def inference(self, msgs):
|
| 25 |
+
# Run inference on the model
|
| 26 |
+
result = self.model.chat(image=None, msgs=msgs, tokenizer=self.tokenizer)
|
| 27 |
+
return result
|
|
|
|
|
|
|
|
|
|
|
|
|
| 28 |
|
| 29 |
+
def postprocess(self, result):
|
| 30 |
+
# Postprocess the output from the model
|
| 31 |
+
return {"generated_text": result}
|
|
|
|
| 32 |
|
| 33 |
service = ModelHandler()
|