--- base_model: google-bert/bert-large-uncased license: apache-2.0 pipeline_tag: question-answering library_name: furiosa-llm tags: - furiosa-ai --- # Model Overview - **Model Architecture:** Bert - **Input:** Text - **Output:** Text - **Model Optimizations:** - **Maximum Context Length:** 384 tokens - **Intended Use Cases:** Intended for commercial and non-commercial use. Same as [google/bert-large-uncase](https://huggingface.co/google-bert/bert-large-uncased), this models is intended for question-answering. - **Release Date:** 04/12/2025 - **Version:** v2025.2 - **License(s):** [Apache License 2.0](https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md) - **Supported Inference Engine(s):** Furiosa LLM - **Supported Hardware Compatibility:** FuriosaAI RNGD - **Preferred Operating System(s):** Linux - **Quantization:** - Tool: Furiosa Model Compressor v0.6.2, included in Furiosa SDK 2025.2 - Weight: int8, Activation: int8, KV cache: int8 - Calibration: [SQuAD v1.1 dataset](https://rajpurkar.github.io/SQuAD-explorer/) ([instruction](https://zenodo.org/records/4792496)), [100 samples](https://github.com/mlcommons/inference/blob/master/calibration/SQuAD-v1.1/bert_calibration_features.txt) ## Description: This model is the pre-compiled version of the [google/bert-large-uncase](https://huggingface.co/google-bert/bert-large-uncased), which is an embedding model that uses an optimized transformer architecture. ## Usage ### MLPerf Benchmark using RNGD Follow the example command below after [installing furiosa-mlperf and its prerequisites](https://developer.furiosa.ai/latest/en/getting_started/furiosa_mlperf.html). ```sh furiosa-mlperf bert-offline furiosa-ai/bert-large-uncased-INT8-MLPerf ./mlperf-result ```