Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,197 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
base_model:
|
| 6 |
+
- microsoft/deberta-v3-large
|
| 7 |
+
pipeline_tag: token-classification
|
| 8 |
+
library_name: transformers
|
| 9 |
+
tags:
|
| 10 |
+
- LoRA
|
| 11 |
+
- Adapter
|
| 12 |
+
---
|
| 13 |
+
# Training
|
| 14 |
+
This model adapter is designed for token classification tasks, enabling it to extract aspect terms and predict the sentiment polarity associated with the extracted aspect terms.
|
| 15 |
+
The extracted aspect terms will be the span(s) from the input text on which a sentiment is being expressed.
|
| 16 |
+
It has been created using [PEFT](https://huggingface.co/docs/peft/index) framework for [LoRA:Low-Rank Adaptation](https://arxiv.org/abs/2106.09685).
|
| 17 |
+
|
| 18 |
+
## Datasets
|
| 19 |
+
This model has been trained on the following datasets:
|
| 20 |
+
|
| 21 |
+
1. Aspect Based Sentiment Analysis SemEval Shared Tasks ([2014](https://aclanthology.org/S14-2004/), [2015](https://aclanthology.org/S15-2082/), [2016](https://aclanthology.org/S16-1002/))
|
| 22 |
+
2. Multi-Aspect Multi-Sentiment [MAMS](https://aclanthology.org/D19-1654/)
|
| 23 |
+
|
| 24 |
+
# Use
|
| 25 |
+
|
| 26 |
+
* Loading the base model and merging it with LoRA parameters
|
| 27 |
+
|
| 28 |
+
```python
|
| 29 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification
|
| 30 |
+
from peft import PeftModel
|
| 31 |
+
|
| 32 |
+
# preparing the labels
|
| 33 |
+
labels = {"B-neu": 1, "I-neu": 2, "O": 0, "B-neg": 3, "B-con": 4, "I-pos": 5, "B-pos": 6, "I-con": 7, "I-neg": 8, "X": -100}
|
| 34 |
+
id2labels = {k:lab for lab, k in labels.items()}
|
| 35 |
+
labels2ids = {k:lab for lab, k in id2labels.items()}
|
| 36 |
+
|
| 37 |
+
# loading tokenizer and base_model
|
| 38 |
+
base_id = 'microsoft/deberta-v3-large'
|
| 39 |
+
tokenizer = AutoTokenizer.from_pretrained(base_id)
|
| 40 |
+
base_model = AutoModelForTokenClassification.from_pretrained(base_id, num_labels=len(labels), id2label=id2labels, label2id=labels2ids)
|
| 41 |
+
|
| 42 |
+
# using this adapter with base model
|
| 43 |
+
model = PeftModel.from_pretrained(base_model, 'gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter', is_trainable=False)
|
| 44 |
+
```
|
| 45 |
+
|
| 46 |
+
This model can be utilized in the following two methods:
|
| 47 |
+
|
| 48 |
+
1. Using pipelines for end to end inference
|
| 49 |
+
2. Making token level inference
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
# Using end-to-end token classification pipeline
|
| 53 |
+
```python
|
| 54 |
+
from transformers import pipeline
|
| 55 |
+
ate_sent_pipeline = pipeline(task='ner',
|
| 56 |
+
aggregation_strategy='simple',
|
| 57 |
+
model=model,
|
| 58 |
+
tokenizer=tokenizer)
|
| 59 |
+
|
| 60 |
+
text_input = "Been here a few times and food has always been good but service really suffers when it gets crowded."
|
| 61 |
+
ate_sent_pipeline(text_input)
|
| 62 |
+
```
|
| 63 |
+
Expected output
|
| 64 |
+
|
| 65 |
+
```bash
|
| 66 |
+
[{'entity_group': 'pos',
|
| 67 |
+
'score': 0.89315575,
|
| 68 |
+
'word': 'food',
|
| 69 |
+
'start': 25,
|
| 70 |
+
'end': 30},
|
| 71 |
+
{'entity_group': 'neg',
|
| 72 |
+
'score': 0.9100719,
|
| 73 |
+
'word': 'service',
|
| 74 |
+
'start': 55,
|
| 75 |
+
'end': 63}]
|
| 76 |
+
```
|
| 77 |
+
# OR
|
| 78 |
+
|
| 79 |
+
# Making token level inference
|
| 80 |
+
|
| 81 |
+
```python
|
| 82 |
+
# making one prediction at a time (should be padded/batched and truncated for efficiency)
|
| 83 |
+
text_input = "Been here a few times and food has always been good but service really suffers when it gets crowded."
|
| 84 |
+
tok_inputs = tokenizer(text_input, return_tensors="pt")
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
y_pred = model(**tok_inputs) # predicting the logits
|
| 88 |
+
|
| 89 |
+
# since first and the last tokens are excluded ([CLS] and [SEP]) they have to be removed before decoding
|
| 90 |
+
y_pred_fin = y_pred.logits.argmax(dim=-1)[0][1:-1] # selecting the most favoured labels for each token from the logits
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
decoded_pred = [id2lab[logx.item()] for logx in y_pred_fin]
|
| 94 |
+
|
| 95 |
+
|
| 96 |
+
## displaying the input tokens with predictions and skipping [CLS] and [SEP] tokens at the beginning and the end respectively
|
| 97 |
+
decoded_toks = tok_inputs['input_ids'][0][1:-1]
|
| 98 |
+
tok_levl_pred = list(zip(tokenizer.convert_ids_to_tokens(decoded_toks), decoded_pred))
|
| 99 |
+
```
|
| 100 |
+
Expected Results
|
| 101 |
+
|
| 102 |
+
```bash
|
| 103 |
+
[('▁Been', 'O'),
|
| 104 |
+
('▁here', 'O'),
|
| 105 |
+
('▁a', 'O'),
|
| 106 |
+
('▁few', 'O'),
|
| 107 |
+
('▁times', 'O'),
|
| 108 |
+
('▁and', 'O'),
|
| 109 |
+
('▁food', 'B-pos'),
|
| 110 |
+
('▁has', 'O'),
|
| 111 |
+
('▁always', 'O'),
|
| 112 |
+
('▁been', 'O'),
|
| 113 |
+
('▁good', 'O'),
|
| 114 |
+
('▁but', 'O'),
|
| 115 |
+
('▁service', 'B-neg'),
|
| 116 |
+
('▁really', 'O'),
|
| 117 |
+
('▁suffers', 'O'),
|
| 118 |
+
('▁when', 'O'),
|
| 119 |
+
('▁it', 'O'),
|
| 120 |
+
('▁gets', 'O'),
|
| 121 |
+
('▁crowded', 'O'),
|
| 122 |
+
('.', 'O')]
|
| 123 |
+
```
|
| 124 |
+
|
| 125 |
+
# Evaluation on Benchmark Test Datasets
|
| 126 |
+
|
| 127 |
+
The first evaluation is for token-extraction task without considering the polarity of the extracted tokens. The tokens expected to be extracted are aspect term tokens
|
| 128 |
+
on which the sentiments have been expressed. (scores are expressed as micro-averages of B-I-O labels)
|
| 129 |
+
|
| 130 |
+
# ATE (Aspect Term Extraction Only)
|
| 131 |
+
| Test Dataset | Base Model | Fine-tuned Model | Precision | Recall | F1 Score |
|
| 132 |
+
| ------------ | ---------- | ---------------- | --------- | ------ | -------- |
|
| 133 |
+
|hotel reviews (SemEval 2015)|microsoft/deberta-v3-base|[gauneg/deberta-v3-base-absa-ate-sentiment](https://huggingface.co/gauneg/deberta-v3-base-absa-ate-sentiment)|71.16|73.92|71.6|
|
| 134 |
+
|hotel reviews (SemEval 2015)|FacebookAI/roberta-base|[gauneg/roberta-base-absa-ate-sentiment](https://huggingface.co/gauneg/roberta-base-absa-ate-sentiment)|70.92|72.28|71.07|
|
| 135 |
+
|hotel reviews (SemEval 2015)|microsoft/deberta-v3-large|(this) [gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter)|64.05|79.69|70.0|
|
| 136 |
+
|hotel reviews (SemEval 2015)|FacebookAI/roberta-large|[gauneg/roberta-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/roberta-large-absa-ate-sentiment-lora-adapter)|66.29|72.78|68.92|
|
| 137 |
+
| ------------ | ---------- | ---------------- | --------- | ------ | -------- |
|
| 138 |
+
|laptop reviews (SemEval 2014)|microsoft/deberta-v3-large|(this) [gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter)|70.58|61.52|64.21|
|
| 139 |
+
|laptop reviews (SemEval 2014)|FacebookAI/roberta-large|[gauneg/roberta-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/roberta-large-absa-ate-sentiment-lora-adapter)|66.38|50.62|54.31|
|
| 140 |
+
|laptop reviews (SemEval 2014)|microsoft/deberta-v3-base|[gauneg/deberta-v3-base-absa-ate-sentiment](https://huggingface.co/gauneg/deberta-v3-base-absa-ate-sentiment)|70.82|48.97|52.08|
|
| 141 |
+
|laptop reviews (SemEval 2014)|FacebookAI/roberta-base|[gauneg/roberta-base-absa-ate-sentiment](https://huggingface.co/gauneg/roberta-base-absa-ate-sentiment)|73.61|46.38|49.87|
|
| 142 |
+
| ------------ | ---------- | ---------------- | --------- | ------ | -------- |
|
| 143 |
+
|MAMS-ATE (2019)|microsoft/deberta-v3-base|[gauneg/deberta-v3-base-absa-ate-sentiment](https://huggingface.co/gauneg/deberta-v3-base-absa-ate-sentiment)|81.07|79.66|80.35|
|
| 144 |
+
|MAMS-ATE (2019)|FacebookAI/roberta-base|[gauneg/roberta-base-absa-ate-sentiment](https://huggingface.co/gauneg/roberta-base-absa-ate-sentiment)|79.91|78.95|79.39|
|
| 145 |
+
|MAMS-ATE (2019)|microsoft/deberta-v3-large|(this)[gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter)|74.46|84.5|78.75|
|
| 146 |
+
|MAMS-ATE (2019)|FacebookAI/roberta-large|[gauneg/roberta-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/roberta-large-absa-ate-sentiment-lora-adapter)|77.8|79.81|78.75|
|
| 147 |
+
| ------------ | ---------- | ---------------- | --------- | ------ | -------- |
|
| 148 |
+
|restaurant reviews (SemEval 2014)|microsoft/deberta-v3-large|(this) [gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter)|88.59|87.0|87.45|
|
| 149 |
+
|restaurant reviews (SemEval 2014)|FacebookAI/roberta-large|[gauneg/roberta-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/roberta-large-absa-ate-sentiment-lora-adapter)|92.26|82.95|86.57|
|
| 150 |
+
|restaurant reviews (SemEval 2014)|FacebookAI/roberta-base|[gauneg/roberta-base-absa-ate-sentiment](https://huggingface.co/gauneg/roberta-base-absa-ate-sentiment)|93.07|81.95|86.32|
|
| 151 |
+
|restaurant reviews (SemEval 2014)|microsoft/deberta-v3-base|[gauneg/deberta-v3-base-absa-ate-sentiment](https://huggingface.co/gauneg/deberta-v3-base-absa-ate-sentiment)|92.94|81.71|86.01|
|
| 152 |
+
| ------------ | ---------- | ---------------- | --------- | ------ | -------- |
|
| 153 |
+
|restaurant reviews (SemEval 2015)|microsoft/deberta-v3-base|[gauneg/deberta-v3-base-absa-ate-sentiment](https://huggingface.co/gauneg/deberta-v3-base-absa-ate-sentiment)|72.91|75.4|72.74|
|
| 154 |
+
|restaurant reviews (SemEval 2015)|FacebookAI/roberta-large|[gauneg/roberta-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/roberta-large-absa-ate-sentiment-lora-adapter)|70.54|77.48|72.63|
|
| 155 |
+
|restaurant reviews (SemEval 2015)|microsoft/deberta-v3-large|(this) [gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter)|68.32|79.84|72.28|
|
| 156 |
+
|restaurant reviews (SemEval 2015)|FacebookAI/roberta-base|[gauneg/roberta-base-absa-ate-sentiment](https://huggingface.co/gauneg/roberta-base-absa-ate-sentiment)|71.94|74.75|71.84|
|
| 157 |
+
| ------------ | ---------- | ---------------- | --------- | ------ | -------- |
|
| 158 |
+
|restaurant reviews (SemEval 2016)|FacebookAI/roberta-large|[gauneg/roberta-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/roberta-large-absa-ate-sentiment-lora-adapter)|70.22|75.83|71.84|
|
| 159 |
+
|restaurant reviews (SemEval 2016)|microsoft/deberta-v3-base|[gauneg/deberta-v3-base-absa-ate-sentiment](https://huggingface.co/gauneg/deberta-v3-base-absa-ate-sentiment)|71.54|73.38|71.2|
|
| 160 |
+
|restaurant reviews (SemEval 2016)|FacebookAI/roberta-base|[gauneg/roberta-base-absa-ate-sentiment](https://huggingface.co/gauneg/roberta-base-absa-ate-sentiment)|71.35|72.78|70.85|
|
| 161 |
+
|restaurant reviews (SemEval 2016)|microsoft/deberta-v3-large|(this)[gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter)|66.68|77.97|70.79|
|
| 162 |
+
|
| 163 |
+
# Aspect Sentiment Evaluation
|
| 164 |
+
This evaluation considers token-extraction task with polarity of the extracted tokens. The tokens expected to be extracted are aspect term tokens
|
| 165 |
+
on which the sentiments have been expressed along with the polarity of the sentiments. (scores are expressed as macro-averages)
|
| 166 |
+
| Test Dataset | Base Model | Fine-tuned Model | Precision | Recall | F1 Score |
|
| 167 |
+
| ------------ | ---------- | ---------------- | --------- | ------ | -------- |
|
| 168 |
+
|hotel reviews (SemEval 2015)|microsoft/deberta-v3-large|(this) [gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter)|51.92|65.55|54.94|
|
| 169 |
+
|hotel reviews (SemEval 2015)|FacebookAI/roberta-base|[gauneg/roberta-base-absa-ate-sentiment](https://huggingface.co/gauneg/roberta-base-absa-ate-sentiment)|54.62|53.65|54.08|
|
| 170 |
+
|hotel reviews (SemEval 2015)|microsoft/deberta-v3-base|[gauneg/deberta-v3-base-absa-ate-sentiment](https://huggingface.co/gauneg/deberta-v3-base-absa-ate-sentiment)|55.43|56.53|54.03|
|
| 171 |
+
|hotel reviews (SemEval 2015)|FacebookAI/roberta-large|[gauneg/roberta-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/roberta-large-absa-ate-sentiment-lora-adapter)|52.88|55.19|53.85|
|
| 172 |
+
| ------------ | ---------- | ---------------- | --------- | ------ | -------- |
|
| 173 |
+
|laptop reviews (SemEval 2014)|microsoft/deberta-v3-large|(this) [gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter)|44.25|41.55|42.81|
|
| 174 |
+
|laptop reviews (SemEval 2014)|microsoft/deberta-v3-base|[gauneg/deberta-v3-base-absa-ate-sentiment](https://huggingface.co/gauneg/deberta-v3-base-absa-ate-sentiment)|46.15|33.23|37.09|
|
| 175 |
+
|laptop reviews (SemEval 2014)|FacebookAI/roberta-large|[gauneg/roberta-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/roberta-large-absa-ate-sentiment-lora-adapter)|41.7|34.38|36.93|
|
| 176 |
+
|laptop reviews (SemEval 2014)|FacebookAI/roberta-base|[gauneg/roberta-base-absa-ate-sentiment](https://huggingface.co/gauneg/roberta-base-absa-ate-sentiment)|44.98|31.87|35.67|
|
| 177 |
+
| ------------ | ---------- | ---------------- | --------- | ------ | -------- |
|
| 178 |
+
|MAMS-ATE (2019)|FacebookAI/roberta-base|[gauneg/roberta-base-absa-ate-sentiment](https://huggingface.co/gauneg/roberta-base-absa-ate-sentiment)|72.06|72.98|72.49|
|
| 179 |
+
|MAMS-ATE (2019)|microsoft/deberta-v3-base|[gauneg/deberta-v3-base-absa-ate-sentiment](https://huggingface.co/gauneg/deberta-v3-base-absa-ate-sentiment)|72.97|71.63|72.26|
|
| 180 |
+
|MAMS-ATE (2019)|FacebookAI/roberta-large|[gauneg/roberta-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/roberta-large-absa-ate-sentiment-lora-adapter)|69.34|73.3|71.07|
|
| 181 |
+
|MAMS-ATE (2019)|microsoft/deberta-v3-large|(this)[gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter)|65.74|75.11|69.77|
|
| 182 |
+
| ------------ | ---------- | ---------------- | --------- | ------ | -------- |
|
| 183 |
+
|restaurant reviews (SemEval 2014)|FacebookAI/roberta-large|[gauneg/roberta-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/roberta-large-absa-ate-sentiment-lora-adapter)|61.15|58.46|59.74|
|
| 184 |
+
|restaurant reviews (SemEval 2014)|FacebookAI/roberta-base|[gauneg/roberta-base-absa-ate-sentiment](https://huggingface.co/gauneg/roberta-base-absa-ate-sentiment)|60.13|56.81|58.13|
|
| 185 |
+
|restaurant reviews (SemEval 2014)|microsoft/deberta-v3-large|(this) [gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter)|56.79|59.3|57.93|
|
| 186 |
+
|restaurant reviews (SemEval 2014)|microsoft/deberta-v3-base|[gauneg/deberta-v3-base-absa-ate-sentiment](https://huggingface.co/gauneg/deberta-v3-base-absa-ate-sentiment)|58.99|54.76|56.45|
|
| 187 |
+
| ------------ | ---------- | ---------------- | --------- | ------ | -------- |
|
| 188 |
+
|restaurant reviews (SemEval 2015)|FacebookAI/roberta-large|[gauneg/roberta-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/roberta-large-absa-ate-sentiment-lora-adapter)|53.89|55.7|54.11|
|
| 189 |
+
|restaurant reviews (SemEval 2015)|FacebookAI/roberta-base|[gauneg/roberta-base-absa-ate-sentiment](https://huggingface.co/gauneg/roberta-base-absa-ate-sentiment)|54.36|55.38|53.6|
|
| 190 |
+
|restaurant reviews (SemEval 2015)|microsoft/deberta-v3-large|(this) [gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter)|51.67|56.58|53.29|
|
| 191 |
+
|restaurant reviews (SemEval 2015)|microsoft/deberta-v3-base|[gauneg/deberta-v3-base-absa-ate-sentiment](https://huggingface.co/gauneg/deberta-v3-base-absa-ate-sentiment)|54.55|53.68|53.12|
|
| 192 |
+
| ------------ | ---------- | ---------------- | --------- | ------ | -------- |
|
| 193 |
+
|restaurant reviews (SemEval 2016)|FacebookAI/roberta-large|[gauneg/roberta-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/roberta-large-absa-ate-sentiment-lora-adapter)|53.7|60.49|55.05|
|
| 194 |
+
|restaurant reviews (SemEval 2016)|FacebookAI/roberta-base|[gauneg/roberta-base-absa-ate-sentiment](https://huggingface.co/gauneg/roberta-base-absa-ate-sentiment)|52.31|54.58|52.33|
|
| 195 |
+
|restaurant reviews (SemEval 2016)|microsoft/deberta-v3-base|[gauneg/deberta-v3-base-absa-ate-sentiment](https://huggingface.co/gauneg/deberta-v3-base-absa-ate-sentiment)|52.07|54.58|52.15|
|
| 196 |
+
|restaurant reviews (SemEval 2016)|microsoft/deberta-v3-large|(this) [gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter](https://huggingface.co/gauneg/deberta-v3-large-absa-ate-sentiment-lora-adapter)|49.07|56.5|51.25|
|
| 197 |
+
|