File size: 16,920 Bytes
63e238b c64a9dc 63e238b b917b4f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 |
# evaluate_molecular_model.py
# now with Durrant's lab filtering in validity check
import os
import sys
import json
import argparse
import random
from typing import List, Optional
from tqdm import tqdm
import torch
from rdkit import Chem
from rdkit.Chem import AllChem
from rdkit import RDLogger
import selfies as sf
import pandas as pd
# Suppress RDKit warnings
RDLogger.DisableLog('rdApp.*')
# Add local path
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
from FastChemTokenizerHF import FastChemTokenizerSelfies
from ChemQ3MTP import ChemQ3MTPForCausalLM
# ----------------------------
# Robust Conversion & Validation (as per your spec)
# ----------------------------
def selfies_to_smiles(selfies_str: str) -> Optional[str]:
"""Convert SELFIES string to SMILES, handling tokenizer artifacts."""
try:
clean_selfies = selfies_str.replace(" ", "")
return sf.decoder(clean_selfies)
except Exception:
return None
def is_valid_smiles(smiles: str) -> bool:
"""
Check if a SMILES string represents a valid molecule.
FIXED: Now properly checks for heavy atoms (non-hydrogens) >= 3
and rejects disconnected/separated molecules
"""
if not isinstance(smiles, str) or len(smiles.strip()) == 0:
return False
smiles = smiles.strip()
# FAST CHECK: Reject separated molecules (contains dots)
if '.' in smiles:
return False # Disconnected components indicated by dots
try:
mol = Chem.MolFromSmiles(smiles)
if mol is None:
return False
# CRITICAL FIX: Check heavy atoms (non-hydrogens), not total atoms
heavy_atoms = mol.GetNumHeavyAtoms() # This excludes hydrogens
if heavy_atoms < 3:
return False
return True
except Exception:
return False
def passes_durrant_lab_filter(smiles: str) -> bool:
"""
Apply Durrant's lab filter to remove improbable substructures.
FIXED: More robust error handling, pattern checking, and disconnected molecule rejection.
Returns True if molecule passes the filter (is acceptable), False otherwise.
"""
if not smiles or not isinstance(smiles, str) or len(smiles.strip()) == 0:
return False
try:
mol = Chem.MolFromSmiles(smiles.strip())
if mol is None:
return False
# Check heavy atoms again (belt and suspenders approach)
if mol.GetNumHeavyAtoms() < 3:
return False
# REJECT SEPARATED/DISCONNECTED MOLECULES (double check here too)
fragments = Chem.rdmolops.GetMolFrags(mol, asMols=False)
if len(fragments) > 1:
return False # Reject molecules with multiple disconnected parts
# Define SMARTS patterns for problematic substructures
problematic_patterns = [
"C=[N-]", # Carbon double bonded to negative nitrogen
"[N-]C=[N+]", # Nitrogen anion bonded to nitrogen cation
"[nH+]c[n-]", # Aromatic nitrogen cation adjacent to nitrogen anion
"[#7+]~[#7+]", # Positive nitrogen connected to positive nitrogen
"[#7-]~[#7-]", # Negative nitrogen connected to negative nitrogen
"[!#7]~[#7+]~[#7-]~[!#7]", # Bridge: non-nitrogen - pos nitrogen - neg nitrogen - non-nitrogen
"[#5]", # Boron atoms
"O=[PH](=O)([#8])([#8])", # Phosphoryl with hydroxyls
"N=c1cc[#7]c[#7]1", # Nitrogen in aromatic ring with another nitrogen
"[$([NX2H1]),$([NX3H2])]=C[$([OH]),$([O-])]", # N=CH-OH or N=CH-O-
]
# Check for metals (excluding common biologically relevant ions)
metal_exclusions = {11, 12, 19, 20} # Na, Mg, K, Ca
for atom in mol.GetAtoms():
atomic_num = atom.GetAtomicNum()
# More precise metal detection
if atomic_num > 20 and atomic_num not in metal_exclusions:
return False
# Check for each problematic pattern
for pattern in problematic_patterns:
try:
patt_mol = Chem.MolFromSmarts(pattern)
if patt_mol is not None:
matches = mol.GetSubstructMatches(patt_mol)
if matches:
return False # Found problematic substructure
except Exception:
# If SMARTS parsing fails, continue to next pattern
continue
return True # Passed all checks
except Exception:
return False
def get_sa_label_and_confidence(selfies_str: str) -> tuple[str, float]:
"""Get SA label (Easy/Hard) and confidence from the model's SA classifier."""
try:
from ChemQ3MTP.rl_utils import get_sa_classifier
classifier = get_sa_classifier()
if classifier is None:
return "Unknown", 0.0
# Get raw classifier output: [{'label': 'Easy', 'score': 0.9187200665473938}]
result = classifier(selfies_str, truncation=True, max_length=128)[0]
return result["label"], result["score"]
except Exception as e:
return "Unknown", 0.0
def get_morgan_fingerprint_from_smiles(smiles: str, radius=2, n_bits=2048):
mol = Chem.MolFromSmiles(smiles)
if mol is None:
return None
return AllChem.GetMorganFingerprintAsBitVect(mol, radius, nBits=n_bits)
def tanimoto_sim(fp1, fp2):
from rdkit.DataStructs import TanimotoSimilarity
return TanimotoSimilarity(fp1, fp2)
# ----------------------------
# Main Evaluation Function
# ----------------------------
def evaluate_model(
model_path: str,
train_data_path: str = "../data/chunk_5.csv",
n_samples: int = 1000,
seed: int = 42,
max_gen_len: int = 32
):
torch.manual_seed(seed)
random.seed(seed)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"π Evaluating model at: {model_path}")
print(f" Device: {device} | Samples: {n_samples} | Seed: {seed}\n")
# Load tokenizer and model
tokenizer = FastChemTokenizerSelfies.from_pretrained("../selftok_core")
model = ChemQ3MTPForCausalLM.from_pretrained(model_path)
model.to(device)
model.eval()
# Load training set and normalize SELFIES (remove spaces)
print("π Loading and normalizing training set for novelty...")
train_df = pd.read_csv(train_data_path)
train_selfies_clean = set()
for s in train_df["SELFIES"].dropna().astype(str):
clean_s = s.replace(" ", "")
train_selfies_clean.add(clean_s)
print(f" Training set size: {len(train_selfies_clean)} unique (space-free) SELFIES\n")
# === MTP-AWARE GENERATION ===
print("GenerationStrategy: Using MTP-aware generation...")
all_selfies_raw = []
batch_size = 32
num_batches = (n_samples + batch_size - 1) // batch_size
with torch.no_grad():
for _ in tqdm(range(num_batches), desc="Generating"):
current_batch_size = min(batch_size, n_samples - len(all_selfies_raw))
if current_batch_size <= 0:
break
input_ids = torch.full(
(current_batch_size, 1),
tokenizer.bos_token_id,
dtype=torch.long,
device=device
)
if hasattr(model, 'generate_with_logprobs'):
try:
outputs = model.generate_with_logprobs(
input_ids=input_ids,
max_new_tokens=25,
temperature=1.0,
top_k=50,
top_p=0.95,
do_sample=True,
return_probs=True,
tokenizer=tokenizer
)
batch_selfies = outputs[0] # list of raw SELFIES (may have spaces)
except Exception as e:
print(f"β οΈ MTP generation failed: {e}. Falling back.")
gen_tokens = model.generate(
input_ids,
max_length=max_gen_len,
do_sample=True,
top_k=50,
top_p=0.95,
temperature=1.0,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id
)
batch_selfies = [
tokenizer.decode(seq, skip_special_tokens=True)
for seq in gen_tokens
]
else:
gen_tokens = model.generate(
input_ids,
max_length=max_gen_len,
do_sample=True,
top_k=50,
top_p=0.95,
temperature=1.0,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id
)
batch_selfies = [
tokenizer.decode(seq, skip_special_tokens=True)
for seq in gen_tokens
]
all_selfies_raw.extend(batch_selfies)
if len(all_selfies_raw) >= n_samples:
break
all_selfies_raw = all_selfies_raw[:n_samples]
print(f"\nβ
Generated {len(all_selfies_raw)} raw SELFIES strings.\n")
# Process: SELFIES β clean SELFIES β SMILES β valid molecules
valid_records = []
print("π§ͺ Processing SELFIES and converting to SMILES...")
for i, raw_selfies in enumerate(tqdm(all_selfies_raw, desc="Converting")):
# Clean the SELFIES (remove spaces as tokenizer uses whitespace)
clean_selfies = raw_selfies.replace(" ", "")
# Convert to SMILES
smiles = selfies_to_smiles(clean_selfies)
if smiles is not None and is_valid_smiles(smiles) and passes_durrant_lab_filter(smiles):
valid_records.append({
"raw_selfies": raw_selfies,
"selfies_clean": clean_selfies,
"selfies": clean_selfies, # canonical version
"smiles": smiles.strip()
})
# >>> DEBUG: Print multiple examples and SA label analysis <<<
if valid_records:
print("\nπ DEBUG: Sample generated molecules")
print("-" * 70)
for i in range(min(5, len(valid_records))):
example = valid_records[i]
print(f"Example {i+1}:")
print(f" Raw SELFIES : {example['raw_selfies'][:80]}{'...' if len(example['raw_selfies']) > 80 else ''}")
print(f" SMILES : {example['smiles']}")
# Get SA label and confidence
label, confidence = get_sa_label_and_confidence(example['raw_selfies'])
print(f" SA Label : {label} (confidence: {confidence:.3f})")
if i == 0:
# Test SA classifier with simple molecules
simple_label, simple_conf = get_sa_label_and_confidence('[C]')
benzene_label, benzene_conf = get_sa_label_and_confidence('[c] [c] [c] [c] [c] [c] [Ring1] [=Branch1]')
print(f" π§ͺ SA Test - Simple molecule: {simple_label} ({simple_conf:.3f})")
print(f" π§ͺ SA Test - Benzene: {benzene_label} ({benzene_conf:.3f})")
# Check molecule properties
mol = Chem.MolFromSmiles(example['smiles'])
if mol:
print(f" Atoms : {mol.GetNumAtoms()}")
print(f" Bonds : {mol.GetNumBonds()}")
print()
print("-" * 70)
# SA Label distribution analysis
sa_labels = []
for r in valid_records[:100]:
label, _ = get_sa_label_and_confidence(r["raw_selfies"])
sa_labels.append(label)
easy_count = sa_labels.count("Easy")
hard_count = sa_labels.count("Hard")
unknown_count = sa_labels.count("Unknown")
print(f"π SA Label Analysis (first 100 molecules):")
print(f" Easy to synthesize: {easy_count}/100 ({easy_count}%)")
print(f" Hard to synthesize: {hard_count}/100 ({hard_count}%)")
if unknown_count > 0:
print(f" Unknown/Failed: {unknown_count}/100 ({unknown_count}%)")
else:
print("\nβ οΈ WARNING: No valid molecules generated in sample!")
# <<< END DEBUG >>>
# Now compute metrics...
validity = len(valid_records) / n_samples
unique_valid = list({r["selfies_clean"]: r for r in valid_records}.values())
uniqueness = len(unique_valid) / len(valid_records) if valid_records else 0.0
novel_count = sum(1 for r in unique_valid if r["selfies_clean"] not in train_selfies_clean)
novelty = novel_count / len(unique_valid) if unique_valid else 0.0
# SA Label Counts (using model's SA classifier)
sa_labels_all = []
for r in unique_valid:
label, _ = get_sa_label_and_confidence(r["raw_selfies"])
sa_labels_all.append(label)
easy_total = sa_labels_all.count("Easy")
hard_total = sa_labels_all.count("Hard")
unknown_total = sa_labels_all.count("Unknown")
total_labeled = len(sa_labels_all)
# Internal Diversity (on SMILES)
if len(unique_valid) >= 2:
fps = []
for r in unique_valid:
fp = get_morgan_fingerprint_from_smiles(r["smiles"])
if fp is not None:
fps.append(fp)
if len(fps) >= 2:
total_sim, count = 0.0, 0
for i in range(len(fps)):
for j in range(i + 1, len(fps)):
total_sim += tanimoto_sim(fps[i], fps[j])
count += 1
internal_diversity = 1.0 - (total_sim / count)
else:
internal_diversity = 0.0
else:
internal_diversity = 0.0
# ----------------------------
# Final Summary
# ----------------------------
print("\n" + "="*55)
print("π MOLECULAR GENERATION EVALUATION SUMMARY")
print("="*55)
print(f"Model Path : {model_path}")
print(f"Generation Mode : {'MTP-aware' if hasattr(model, 'generate_with_logprobs') else 'Standard'}")
print(f"Samples Generated: {n_samples}")
print("-"*55)
print(f"Validity : {validity:.4f} ({len(valid_records)}/{n_samples})")
print(f"Uniqueness : {uniqueness:.4f} (unique valid)")
print(f"Novelty (vs train): {novelty:.4f} (space-free SELFIES)")
print(f"Synthesis Labels : Easy: {easy_total}/{total_labeled} ({easy_total/max(1,total_labeled)*100:.1f}%) | Hard: {hard_total}/{total_labeled} ({hard_total/max(1,total_labeled)*100:.1f}%)")
if unknown_total > 0:
print(f" Unknown: {unknown_total}/{total_labeled} ({unknown_total/max(1,total_labeled)*100:.1f}%)")
print(f"Internal Diversity: {internal_diversity:.4f} (1 - avg Tanimoto)")
print("="*55)
results = {
"model_path": model_path,
"generation_mode": "MTP-aware" if hasattr(model, 'generate_with_logprobs') else "standard",
"n_samples": n_samples,
"validity": validity,
"uniqueness": uniqueness,
"novelty": novelty,
"sa_easy_count": easy_total,
"sa_hard_count": hard_total,
"sa_easy_percentage": easy_total/max(1,total_labeled)*100,
"sa_hard_percentage": hard_total/max(1,total_labeled)*100,
"internal_diversity": internal_diversity,
"valid_molecules_count": len(valid_records)
}
if unknown_total > 0:
results["sa_unknown_count"] = unknown_total
results["sa_unknown_percentage"] = unknown_total/max(1,total_labeled)*100
output_json = os.path.join(model_path, "evaluation_summary.json")
with open(output_json, "w") as f:
json.dump(results, f, indent=2)
print(f"\nπΎ Results saved to: {output_json}")
return results
# ----------------------------
# CLI
# ----------------------------
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Evaluate molecular generative model with MTP-aware generation")
parser.add_argument("--model_path", type=str, required=True, help="Path to model checkpoint")
parser.add_argument("--n_samples", type=int, default=1000, help="Number of molecules to generate")
parser.add_argument("--seed", type=int, default=42, help="Random seed")
parser.add_argument("--train_data", type=str, default="../data/chunk_5.csv", help="Training data CSV")
args = parser.parse_args()
evaluate_model(
model_path=args.model_path,
train_data_path=args.train_data,
n_samples=args.n_samples,
seed=args.seed
) |