File size: 21,070 Bytes
19275fc 7fd900a 19275fc 7fd900a 19275fc 7fd900a 19275fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 |
# ========================
# Train with NTP + MTP
# Updated for ChemQ3MTP structure
# by gbyuvd
# ========================
# train_withmtp.py
import sys
import os
# Add the current directory to Python path so it can find your modules
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))
import torch
import torch.nn as nn
import torch.nn.functional as F
import json
from typing import List, Union, Optional, Tuple, Dict, Any
from transformers.tokenization_utils_base import BatchEncoding
from transformers import Trainer, TrainingArguments, DataCollatorForLanguageModeling
from datasets import load_dataset, DatasetDict, Dataset
import pandas as pd
from torch.utils.data import Dataset as TorchDataset, DataLoader, random_split
from sklearn.model_selection import train_test_split
from ranger21 import Ranger21
from tqdm.notebook import tqdm
from FastChemTokenizerHF import FastChemTokenizerSelfies
from ChemQ3MTP import ChemQ3MTPConfig, ChemQ3MTPForCausalLM # This should now work
os.environ["TOKENIZERS_PARALLELISM"] = "false"
from transformers import TrainerCallback
import datetime
# Clear cache functions
def clear_cache():
"""Clear PyTorch and CUDA caches"""
print("Clearing PyTorch and CUDA caches...")
if torch.cuda.is_available():
torch.cuda.empty_cache()
torch.cuda.synchronize()
print("CUDA cache cleared")
torch.backends.cudnn.benchmark = True # Enable cuDNN optimization
print("PyTorch cache cleared")
def clear_datasets_cache():
"""Clear datasets cache directory"""
import shutil
from datasets import disable_caching, enable_caching, get_cache_directory
try:
cache_dir = get_cache_directory()
print(f"Clearing datasets cache at: {cache_dir}")
if os.path.exists(cache_dir):
shutil.rmtree(cache_dir)
print("Datasets cache cleared")
except:
print("Could not clear datasets cache (may not exist)")
# ==============================
# Clear caches before starting
# ==============================
clear_cache()
# clear_datasets_cache()
# ==============================
# Load external configuration
# ==============================
with open("config.json", "r") as f:
CONFIG = json.load(f)
TRAINING_CFG = CONFIG["training"]
MODEL_CFG = {k: v for k, v in CONFIG.items()
if k not in ["training", "generation", "model_type", "architectures"]}
GENERATION_CFG = CONFIG.get("generation", {})
# Training params
BATCH_SIZE = TRAINING_CFG["batch_size"]
NUM_EPOCHS = TRAINING_CFG["num_epochs"]
LEARNING_RATE = TRAINING_CFG["learning_rate"]
WEIGHT_DECAY = TRAINING_CFG["weight_decay"]
GRAD_ACCUM_STEPS = TRAINING_CFG["gradient_accumulation_steps"]
TOKENIZE_BATCH_SIZE = TRAINING_CFG["tokenize_batch_size"]
TRAIN_SPLIT_RATIO = TRAINING_CFG["train_split_ratio"]
VAL_SPLIT_RATIO = TRAINING_CFG["val_split_ratio"]
TEST_SPLIT_RATIO = TRAINING_CFG["test_split_ratio"]
INCLUDE_FOR_METRICS = TRAINING_CFG.get("include_for_metrics", ["input_ids", "attention_mask", "labels"])
# ==============================
class LossLoggerCallback(TrainerCallback):
def __init__(self, log_file="training_losses.txt", with_timestamp=False):
self.log_file = log_file
self.with_timestamp = with_timestamp
with open(self.log_file, "w") as f:
if self.with_timestamp:
f.write("time\tstep\tloss\teval_loss\n")
else:
f.write("step\tloss\teval_loss\n")
def on_log(self, args, state, control, logs=None, **kwargs):
if logs is None:
return
step = state.global_step
loss = logs.get("loss")
eval_loss = logs.get("eval_loss")
with open(self.log_file, "a") as f:
if self.with_timestamp:
ts = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
f.write(f"{ts}\t{step}\t{loss if loss is not None else ''}\t{eval_loss if eval_loss is not None else ''}\n")
else:
f.write(f"{step}\t{loss if loss is not None else ''}\t{eval_loss if eval_loss is not None else ''}\n")
class CheckpointEvery10PercentCallback(TrainerCallback):
"""
Custom callback to save checkpoints at 10% intervals of total training progress
"""
def __init__(self, save_dir, total_steps):
self.save_dir = save_dir
self.total_steps = total_steps
self.checkpoint_intervals = []
# Calculate steps for 10% intervals (10%, 20%, 30%, ..., 100%)
for i in range(1, 11):
checkpoint_step = int(total_steps * i * 0.1)
self.checkpoint_intervals.append(checkpoint_step)
self.saved_checkpoints = set()
print(f"Checkpoint intervals: {self.checkpoint_intervals}")
def on_step_end(self, args, state, control, **kwargs):
current_step = state.global_step
# Check if we've reached a 10% checkpoint
for checkpoint_step in self.checkpoint_intervals:
if current_step == checkpoint_step and checkpoint_step not in self.saved_checkpoints:
checkpoint_dir = f"{self.save_dir}/checkpoint_10percent_{current_step}"
print(f"Saving 10% progress checkpoint at step {current_step} to {checkpoint_dir}")
# Save model and tokenizer
model = kwargs.get('model')
tokenizer = kwargs.get('processing_class') # or kwargs.get('tokenizer')
if model is not None:
model.save_pretrained(checkpoint_dir)
if tokenizer is not None:
tokenizer.save_pretrained(checkpoint_dir)
# Also save training state
if hasattr(kwargs.get('trainer'), 'save_state'):
kwargs['trainer'].save_state()
self.saved_checkpoints.add(checkpoint_step)
print(f"Checkpoint saved at step {current_step} ({current_step/self.total_steps*100:.1f}% completion)")
break # Only save one checkpoint per step
def tokenize_function(examples, tokenizer, max_length):
"""Tokenize function defined outside main to avoid closure issues"""
batch_results = {"input_ids": [], "attention_mask": [], "labels": []}
smiles_list = examples['SELFIES'] if isinstance(examples['SELFIES'], list) else [examples['SELFIES']]
for smiles in smiles_list:
tokenized = tokenizer(
smiles,
truncation=True,
padding=False,
max_length=max_length,
return_tensors=None,
add_special_tokens=True
)
input_ids = tokenized["input_ids"]
attention_mask = tokenized["attention_mask"]
labels = input_ids.copy()
batch_results["input_ids"].append(input_ids)
batch_results["attention_mask"].append(attention_mask)
batch_results["labels"].append(labels)
return batch_results
def main():
# Clear cache at the beginning of main function too
clear_cache()
# --- Load the tokenizer ---
tokenizer = FastChemTokenizerSelfies.from_pretrained("../selftok_core")
out = tokenizer("[C] [=C] [Branch1]", return_tensors="pt")
print(out.input_ids)
print(out.attention_mask)
out = out.to("cuda" if torch.cuda.is_available() else "cpu")
print(out.input_ids.device)
# --- Define config ---
config = ChemQ3MTPConfig( # Updated to use ChemQ3MTPConfig
vocab_size=len(tokenizer),
bos_token_id=tokenizer.bos_token_id,
eos_token_id=tokenizer.eos_token_id,
pad_token_id=tokenizer.pad_token_id,
**MODEL_CFG
)
model = ChemQ3MTPForCausalLM(config) # Updated to use the new model class
def count_parameters(model):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
print(f"Enhanced model has {count_parameters(model):,} trainable parameters.")
batch_size, seq_len = 2, 32
dummy_input = torch.randint(
low=0,
high=len(tokenizer),
size=(batch_size, seq_len),
dtype=torch.long,
)
with torch.no_grad():
outputs = model(dummy_input)
logits = outputs.logits
print(f"Input shape: {dummy_input.shape}")
print(f"Logits shape: {logits.shape}")
print("Loading dataset...")
# Load dataset without streaming
dataset = load_dataset(
'csv',
data_files='../data/chunk_1.csv',
split='train'
)
print(f"Dataset loaded with {len(dataset)} samples")
# Verify the correct file is loaded by checking first few samples
print("First few samples from dataset:")
for i in range(min(3, len(dataset))):
sample = dataset[i]
print(f"Sample {i}: {sample}")
if 'SELFIES' in sample:
print(f"First SELFIES: {sample['SELFIES']}")
break
print("Shuffling and splitting dataset...")
# Shuffle the entire dataset first
dataset = dataset.shuffle(seed=42)
# Calculate split sizes
total_lines = len(dataset)
test_size = int(TEST_SPLIT_RATIO * total_lines)
val_size = int(VAL_SPLIT_RATIO * total_lines)
train_size = total_lines - test_size - val_size
print(f"Total samples: {total_lines}")
print(f"Split sizes - train: {train_size}, val: {val_size}, test: {test_size}")
# Create splits using select
train_dataset = dataset.select(range(0, train_size))
val_dataset = dataset.select(range(train_size, train_size + val_size))
test_dataset = dataset.select(range(train_size + val_size, total_lines))
print(f"Dataset split: train={len(train_dataset)}, val={len(val_dataset)}, test={len(test_dataset)}")
# Tokenize datasets using batched mapping with explicit parameters
print("Tokenizing datasets...")
# Define tokenize function with all parameters passed explicitly
def tokenize_train(examples):
return tokenize_function(examples, tokenizer, MODEL_CFG["max_position_embeddings"])
def tokenize_val(examples):
return tokenize_function(examples, tokenizer, MODEL_CFG["max_position_embeddings"])
train_dataset = train_dataset.map(
tokenize_train,
batched=True,
batch_size=TOKENIZE_BATCH_SIZE,
remove_columns=["SELFIES"],
desc="Tokenizing train dataset"
)
val_dataset = val_dataset.map(
tokenize_val,
batched=True,
batch_size=TOKENIZE_BATCH_SIZE,
remove_columns=["SELFIES"],
desc="Tokenizing val dataset"
)
class EnhancedDataCollator:
def __init__(self, tokenizer, pad_to_multiple_of=8):
self.tokenizer = tokenizer
self.pad_to_multiple_of = pad_to_multiple_of
def __call__(self, features):
max_length = max(len(f["input_ids"]) for f in features)
if self.pad_to_multiple_of:
max_length = ((max_length + self.pad_to_multiple_of - 1) // self.pad_to_multiple_of) * self.pad_to_multiple_of
batch = {"input_ids": [], "attention_mask": [], "labels": []}
for feature in features:
input_ids = feature["input_ids"]
attention_mask = feature["attention_mask"]
labels = feature["labels"]
padding_length = max_length - len(input_ids)
padded_input_ids = input_ids + [self.tokenizer.pad_token_id] * padding_length
padded_attention_mask = attention_mask + [0] * padding_length
padded_labels = labels + [-100] * padding_length
batch["input_ids"].append(padded_input_ids)
batch["attention_mask"].append(padded_attention_mask)
batch["labels"].append(padded_labels)
batch = {key: torch.tensor(values, dtype=torch.long) for key, values in batch.items()}
return batch
data_collator = EnhancedDataCollator(tokenizer, pad_to_multiple_of=8)
def create_enhanced_optimizer(model_params):
num_batches_per_epoch = len(train_dataset) // BATCH_SIZE
optimizer_params = {
'lr': LEARNING_RATE,
'weight_decay': WEIGHT_DECAY,
'use_adabelief': True,
'use_cheb': False,
'use_warmup': True,
'use_madgrad': True,
'num_epochs': NUM_EPOCHS,
'using_gc': True,
'warmdown_active': True,
'num_batches_per_epoch': num_batches_per_epoch
}
return Ranger21(model_params, **optimizer_params)
from torch.optim.lr_scheduler import LambdaLR
class EnhancedCustomTrainer(Trainer):
def create_optimizer(self):
self.optimizer = create_enhanced_optimizer(self.model.parameters())
return self.optimizer
def create_scheduler(self, num_training_steps, optimizer=None):
if optimizer is None:
optimizer = self.optimizer
self.lr_scheduler = LambdaLR(optimizer, lr_lambda=lambda step: 1.0)
return self.lr_scheduler
def compute_loss(self, model, inputs, return_outputs=False, **kwargs):
outputs = model(**inputs)
loss = outputs.loss
return (loss, outputs) if return_outputs else loss
steps_per_epoch = len(train_dataset) // BATCH_SIZE
total_steps = steps_per_epoch * NUM_EPOCHS
training_args = TrainingArguments(
output_dir='./chemq3minipret',
max_steps=total_steps,
per_device_train_batch_size=BATCH_SIZE,
per_device_eval_batch_size=BATCH_SIZE,
gradient_accumulation_steps=GRAD_ACCUM_STEPS,
logging_dir='./gptlo-1',
logging_strategy="steps",
logging_steps=max(1, steps_per_epoch // 4),
eval_strategy="steps",
eval_steps=max(1, steps_per_epoch // 4),
save_strategy="steps",
save_steps=steps_per_epoch, # Save every epoch
save_total_limit=1,
dataloader_num_workers=0,
dataloader_pin_memory=False,
remove_unused_columns=False,
prediction_loss_only=False,
fp16=torch.cuda.is_available(),
gradient_checkpointing=True,
dataloader_drop_last=True,
report_to=None,
include_for_metrics=INCLUDE_FOR_METRICS,
)
print("Initializing enhanced trainer with MTP capabilities...")
trainer = EnhancedCustomTrainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
data_collator=data_collator,
processing_class=tokenizer,
callbacks=[
LossLoggerCallback("training_losses.txt", with_timestamp=True),
CheckpointEvery10PercentCallback("./chemq3minipret", total_steps)
]
)
model.set_mtp_training(True)
print(" MTP training mode enabled")
print("Starting enhanced training with MTP and Horizon Loss...")
try:
print("\n Phase 1: Warmup with standard Causal LM...")
model.set_mtp_training(False)
warmup_steps = max(1, total_steps // 5)
# Update trainer args for warmup phase
trainer.args.max_steps = warmup_steps
trainer.train()
print(f"\n Phase 1 completed. Warmup with {warmup_steps} steps finished.")
print(f"\n Phase 2: Full MTP + Horizon Loss training...")
print(f"Total training steps: {total_steps}")
print(f"Training will save checkpoints at 10% intervals:")
for i in range(1, 11):
checkpoint_step = int(total_steps * i * 0.1)
print(f" - {i*10}%: Step {checkpoint_step}")
model.set_mtp_training(True)
# Reset max steps to total for the full training phase
trainer.args.max_steps = total_steps
trainer.train(resume_from_checkpoint=True)
print("Enhanced training completed successfully!")
trainer.save_model("./enhanced-qwen3-final")
tokenizer.save_pretrained("./enhanced-qwen3-final")
training_config = {
"model_type": "ChemQ3MTPForCausalLM",
"num_future_tokens": 3,
"horizon_loss_enabled": True,
"mtp_head_enabled": True,
"training_phases": ["causal_lm_warmup", "mtp_horizon_training"],
"total_parameters": count_parameters(model),
}
config_path = "./enhanced-qwen3-final/training_config.json"
with open(config_path, "w") as f:
json.dump(training_config, f, indent=2)
print(f" Enhanced model, tokenizer, and config saved!")
except Exception as e:
print(f"Enhanced training failed with error: {e}")
import traceback
traceback.print_exc()
return
print("\nmTesting enhanced generation capabilities...")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
model.eval()
try:
print("\n--- Standard Generation Test ---")
input_ids = tokenizer("<s> [C]", return_tensors="pt").input_ids.to(device)
with torch.no_grad():
model.set_mtp_training(False)
gen = model.generate(
input_ids,
max_length=25,
top_k=50,
top_p=0.9,
temperature=1.0,
do_sample=True,
pad_token_id=tokenizer.pad_token_id,
eos_token_id=tokenizer.eos_token_id,
num_return_sequences=3,
)
for i, sequence in enumerate(gen):
result = tokenizer.decode(sequence, skip_special_tokens=True)
print(f"Generated SELFIES {i+1}: {result}")
print("\n--- MTP Analysis Test ---")
test_smiles = "[C]"
test_input = tokenizer(test_smiles, return_tensors="pt", add_special_tokens=True).to(device)
test_input = {k: v for k, v in test_input.items() if k != 'token_type_ids'} # Remove token_type_ids
with torch.no_grad():
outputs = model(**test_input)
if hasattr(model, 'mtp_head') and hasattr(model.mtp_head, 'prediction_heads'):
hidden_states = model.model(test_input['input_ids']).last_hidden_state
mtp_outputs = model.mtp_head(hidden_states)
print(f"Input SELFIES: {test_smiles}")
print(f"Tokenized: {tokenizer.convert_ids_to_tokens(test_input['input_ids'][0].tolist())}")
for i, (key, logits) in enumerate(mtp_outputs.items()):
top_tokens = torch.topk(logits[0], k=3, dim=-1)
print(f"\n{key} predictions:")
for pos in range(min(5, logits.size(1))):
pos_preds = []
for j in range(3):
token_id = top_tokens.indices[pos, j].item()
prob = torch.softmax(logits[0, pos], dim=-1)[token_id].item()
token = tokenizer.id_to_token.get(token_id, '<UNK>')
pos_preds.append(f"{token}({prob:.3f})")
print(f" Position {pos}: {', '.join(pos_preds)}")
print("\nEnhanced generation tests completed!")
except Exception as e:
print(f"Enhanced generation test failed: {e}")
import traceback
traceback.print_exc()
print("\nEnhanced Model Analysis:")
print(f"Total parameters: {count_parameters(model):,}")
mtp_params = sum(p.numel() for p in model.mtp_head.parameters() if p.requires_grad)
horizon_params = sum(p.numel() for p in model.horizon_loss.parameters() if p.requires_grad)
base_params = count_parameters(model) - mtp_params - horizon_params
print(f"Base model parameters: {base_params:,}")
print(f"MTP head parameters: {mtp_params:,}")
print(f"Horizon loss parameters: {horizon_params:,}")
print(f"Enhancement overhead: {((mtp_params + horizon_params) / base_params * 100):.2f}%")
print(f"\n Enhanced Model Architecture:")
print(f"- Base Model: Qwen2 with {config.num_hidden_layers} layers") # Updated this line
print(f"- Hidden Size: {config.hidden_size}")
print(f"- Attention Heads: {config.num_attention_heads}")
print(f"- Vocab Size: {config.vocab_size}")
print(f"- MTP Future Tokens: {model.mtp_head.num_future_tokens}")
print(f"- Horizon Loss Weights: Learnable")
print(f"- Training Mode: {'MTP + Horizon Loss' if model.use_mtp_training else 'Standard Causal LM'}")
print("\n Enhanced training pipeline completed successfully!")
if __name__ == "__main__":
main() |