File size: 21,070 Bytes
19275fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fd900a
 
 
 
 
19275fc
 
7fd900a
19275fc
 
 
 
 
 
 
7fd900a
19275fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
# ========================
#  Train with NTP + MTP
#  Updated for ChemQ3MTP structure
#  by gbyuvd
# ========================

# train_withmtp.py
import sys
import os
# Add the current directory to Python path so it can find your modules
sys.path.insert(0, os.path.dirname(os.path.abspath(__file__)))

import torch
import torch.nn as nn
import torch.nn.functional as F
import json
from typing import List, Union, Optional, Tuple, Dict, Any
from transformers.tokenization_utils_base import BatchEncoding
from transformers import Trainer, TrainingArguments, DataCollatorForLanguageModeling
from datasets import load_dataset, DatasetDict, Dataset
import pandas as pd
from torch.utils.data import Dataset as TorchDataset, DataLoader, random_split
from sklearn.model_selection import train_test_split
from ranger21 import Ranger21
from tqdm.notebook import tqdm
from FastChemTokenizerHF import FastChemTokenizerSelfies
from ChemQ3MTP import ChemQ3MTPConfig, ChemQ3MTPForCausalLM  # This should now work
os.environ["TOKENIZERS_PARALLELISM"] = "false"
from transformers import TrainerCallback
import datetime

# Clear cache functions
def clear_cache():
    """Clear PyTorch and CUDA caches"""
    print("Clearing PyTorch and CUDA caches...")
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
        torch.cuda.synchronize()
        print("CUDA cache cleared")
    torch.backends.cudnn.benchmark = True  # Enable cuDNN optimization
    print("PyTorch cache cleared")

def clear_datasets_cache():
    """Clear datasets cache directory"""
    import shutil
    from datasets import disable_caching, enable_caching, get_cache_directory
    try:
        cache_dir = get_cache_directory()
        print(f"Clearing datasets cache at: {cache_dir}")
        if os.path.exists(cache_dir):
            shutil.rmtree(cache_dir)
            print("Datasets cache cleared")
    except:
        print("Could not clear datasets cache (may not exist)")

# ==============================
# Clear caches before starting
# ==============================
clear_cache()
# clear_datasets_cache()

# ==============================
# Load external configuration
# ==============================
with open("config.json", "r") as f:
    CONFIG = json.load(f)

TRAINING_CFG = CONFIG["training"]
MODEL_CFG = {k: v for k, v in CONFIG.items() 
             if k not in ["training", "generation", "model_type", "architectures"]}
GENERATION_CFG = CONFIG.get("generation", {})

# Training params
BATCH_SIZE = TRAINING_CFG["batch_size"]
NUM_EPOCHS = TRAINING_CFG["num_epochs"]
LEARNING_RATE = TRAINING_CFG["learning_rate"]
WEIGHT_DECAY = TRAINING_CFG["weight_decay"]
GRAD_ACCUM_STEPS = TRAINING_CFG["gradient_accumulation_steps"]
TOKENIZE_BATCH_SIZE = TRAINING_CFG["tokenize_batch_size"]
TRAIN_SPLIT_RATIO = TRAINING_CFG["train_split_ratio"]
VAL_SPLIT_RATIO = TRAINING_CFG["val_split_ratio"]
TEST_SPLIT_RATIO = TRAINING_CFG["test_split_ratio"]
INCLUDE_FOR_METRICS = TRAINING_CFG.get("include_for_metrics", ["input_ids", "attention_mask", "labels"])
# ==============================

class LossLoggerCallback(TrainerCallback):
    def __init__(self, log_file="training_losses.txt", with_timestamp=False):
        self.log_file = log_file
        self.with_timestamp = with_timestamp
        with open(self.log_file, "w") as f:
            if self.with_timestamp:
                f.write("time\tstep\tloss\teval_loss\n")
            else:
                f.write("step\tloss\teval_loss\n")

    def on_log(self, args, state, control, logs=None, **kwargs):
        if logs is None:
            return
        step = state.global_step
        loss = logs.get("loss")
        eval_loss = logs.get("eval_loss")

        with open(self.log_file, "a") as f:
            if self.with_timestamp:
                ts = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")
                f.write(f"{ts}\t{step}\t{loss if loss is not None else ''}\t{eval_loss if eval_loss is not None else ''}\n")
            else:
                f.write(f"{step}\t{loss if loss is not None else ''}\t{eval_loss if eval_loss is not None else ''}\n")


class CheckpointEvery10PercentCallback(TrainerCallback):
    """

    Custom callback to save checkpoints at 10% intervals of total training progress

    """
    def __init__(self, save_dir, total_steps):
        self.save_dir = save_dir
        self.total_steps = total_steps
        self.checkpoint_intervals = []
        # Calculate steps for 10% intervals (10%, 20%, 30%, ..., 100%)
        for i in range(1, 11):
            checkpoint_step = int(total_steps * i * 0.1)
            self.checkpoint_intervals.append(checkpoint_step)
        self.saved_checkpoints = set()
        print(f"Checkpoint intervals: {self.checkpoint_intervals}")

    def on_step_end(self, args, state, control, **kwargs):
        current_step = state.global_step
        
        # Check if we've reached a 10% checkpoint
        for checkpoint_step in self.checkpoint_intervals:
            if current_step == checkpoint_step and checkpoint_step not in self.saved_checkpoints:
                checkpoint_dir = f"{self.save_dir}/checkpoint_10percent_{current_step}"
                print(f"Saving 10% progress checkpoint at step {current_step} to {checkpoint_dir}")
                
                # Save model and tokenizer
                model = kwargs.get('model')
                tokenizer = kwargs.get('processing_class')  # or kwargs.get('tokenizer')
                
                if model is not None:
                    model.save_pretrained(checkpoint_dir)
                if tokenizer is not None:
                    tokenizer.save_pretrained(checkpoint_dir)
                
                # Also save training state
                if hasattr(kwargs.get('trainer'), 'save_state'):
                    kwargs['trainer'].save_state()
                
                self.saved_checkpoints.add(checkpoint_step)
                print(f"Checkpoint saved at step {current_step} ({current_step/self.total_steps*100:.1f}% completion)")
                break  # Only save one checkpoint per step


def tokenize_function(examples, tokenizer, max_length):
    """Tokenize function defined outside main to avoid closure issues"""
    batch_results = {"input_ids": [], "attention_mask": [], "labels": []}
    smiles_list = examples['SELFIES'] if isinstance(examples['SELFIES'], list) else [examples['SELFIES']]
    for smiles in smiles_list:
        tokenized = tokenizer(
            smiles,
            truncation=True,
            padding=False,
            max_length=max_length,
            return_tensors=None,
            add_special_tokens=True
        )
        input_ids = tokenized["input_ids"]
        attention_mask = tokenized["attention_mask"]
        labels = input_ids.copy()
        batch_results["input_ids"].append(input_ids)
        batch_results["attention_mask"].append(attention_mask)
        batch_results["labels"].append(labels)
    return batch_results


def main():
    # Clear cache at the beginning of main function too
    clear_cache()
    
    # --- Load the tokenizer ---
    tokenizer = FastChemTokenizerSelfies.from_pretrained("../selftok_core")

    out = tokenizer("[C] [=C] [Branch1]", return_tensors="pt")
    print(out.input_ids)
    print(out.attention_mask)
    out = out.to("cuda" if torch.cuda.is_available() else "cpu")
    print(out.input_ids.device)

    # --- Define config ---
    config = ChemQ3MTPConfig(  # Updated to use ChemQ3MTPConfig
        vocab_size=len(tokenizer),
        bos_token_id=tokenizer.bos_token_id,
        eos_token_id=tokenizer.eos_token_id,
        pad_token_id=tokenizer.pad_token_id,
        **MODEL_CFG
    )

    model = ChemQ3MTPForCausalLM(config)  # Updated to use the new model class

    def count_parameters(model):
        return sum(p.numel() for p in model.parameters() if p.requires_grad)

    print(f"Enhanced model has {count_parameters(model):,} trainable parameters.")

    batch_size, seq_len = 2, 32
    dummy_input = torch.randint(
        low=0,
        high=len(tokenizer),
        size=(batch_size, seq_len),
        dtype=torch.long,
    )
    with torch.no_grad():
        outputs = model(dummy_input)
        logits = outputs.logits
    print(f"Input shape: {dummy_input.shape}")
    print(f"Logits shape: {logits.shape}")

    print("Loading dataset...")
    # Load dataset without streaming
    dataset = load_dataset(
        'csv',
        data_files='../data/chunk_1.csv',
        split='train'
    )

    print(f"Dataset loaded with {len(dataset)} samples")
    
    # Verify the correct file is loaded by checking first few samples
    print("First few samples from dataset:")
    for i in range(min(3, len(dataset))):
        sample = dataset[i]
        print(f"Sample {i}: {sample}")
        if 'SELFIES' in sample:
            print(f"First SELFIES: {sample['SELFIES']}")
        break

    print("Shuffling and splitting dataset...")
    # Shuffle the entire dataset first
    dataset = dataset.shuffle(seed=42)

    # Calculate split sizes
    total_lines = len(dataset)
    test_size = int(TEST_SPLIT_RATIO * total_lines)
    val_size = int(VAL_SPLIT_RATIO * total_lines)
    train_size = total_lines - test_size - val_size

    print(f"Total samples: {total_lines}")
    print(f"Split sizes - train: {train_size}, val: {val_size}, test: {test_size}")

    # Create splits using select
    train_dataset = dataset.select(range(0, train_size))
    val_dataset = dataset.select(range(train_size, train_size + val_size))
    test_dataset = dataset.select(range(train_size + val_size, total_lines))

    print(f"Dataset split: train={len(train_dataset)}, val={len(val_dataset)}, test={len(test_dataset)}")

    # Tokenize datasets using batched mapping with explicit parameters
    print("Tokenizing datasets...")
    
    # Define tokenize function with all parameters passed explicitly
    def tokenize_train(examples):
        return tokenize_function(examples, tokenizer, MODEL_CFG["max_position_embeddings"])
    
    def tokenize_val(examples):
        return tokenize_function(examples, tokenizer, MODEL_CFG["max_position_embeddings"])

    train_dataset = train_dataset.map(
        tokenize_train, 
        batched=True, 
        batch_size=TOKENIZE_BATCH_SIZE, 
        remove_columns=["SELFIES"],
        desc="Tokenizing train dataset"
    )
    val_dataset = val_dataset.map(
        tokenize_val, 
        batched=True, 
        batch_size=TOKENIZE_BATCH_SIZE, 
        remove_columns=["SELFIES"],
        desc="Tokenizing val dataset"
    )

    class EnhancedDataCollator:
        def __init__(self, tokenizer, pad_to_multiple_of=8):
            self.tokenizer = tokenizer
            self.pad_to_multiple_of = pad_to_multiple_of
        def __call__(self, features):
            max_length = max(len(f["input_ids"]) for f in features)
            if self.pad_to_multiple_of:
                max_length = ((max_length + self.pad_to_multiple_of - 1) // self.pad_to_multiple_of) * self.pad_to_multiple_of
            batch = {"input_ids": [], "attention_mask": [], "labels": []}
            for feature in features:
                input_ids = feature["input_ids"]
                attention_mask = feature["attention_mask"]
                labels = feature["labels"]
                padding_length = max_length - len(input_ids)
                padded_input_ids = input_ids + [self.tokenizer.pad_token_id] * padding_length
                padded_attention_mask = attention_mask + [0] * padding_length
                padded_labels = labels + [-100] * padding_length
                batch["input_ids"].append(padded_input_ids)
                batch["attention_mask"].append(padded_attention_mask)
                batch["labels"].append(padded_labels)
            batch = {key: torch.tensor(values, dtype=torch.long) for key, values in batch.items()}
            return batch

    data_collator = EnhancedDataCollator(tokenizer, pad_to_multiple_of=8)

    def create_enhanced_optimizer(model_params):
        num_batches_per_epoch = len(train_dataset) // BATCH_SIZE
        optimizer_params = {
            'lr': LEARNING_RATE,
            'weight_decay': WEIGHT_DECAY,
            'use_adabelief': True,
            'use_cheb': False,
            'use_warmup': True,
            'use_madgrad': True,
            'num_epochs': NUM_EPOCHS,
            'using_gc': True,
            'warmdown_active': True,
            'num_batches_per_epoch': num_batches_per_epoch
        }
        return Ranger21(model_params, **optimizer_params)

    from torch.optim.lr_scheduler import LambdaLR
    class EnhancedCustomTrainer(Trainer):
        def create_optimizer(self):
            self.optimizer = create_enhanced_optimizer(self.model.parameters())
            return self.optimizer
        def create_scheduler(self, num_training_steps, optimizer=None):
            if optimizer is None:
                optimizer = self.optimizer
            self.lr_scheduler = LambdaLR(optimizer, lr_lambda=lambda step: 1.0)
            return self.lr_scheduler
        def compute_loss(self, model, inputs, return_outputs=False, **kwargs):
            outputs = model(**inputs)
            loss = outputs.loss
            return (loss, outputs) if return_outputs else loss

    steps_per_epoch = len(train_dataset) // BATCH_SIZE
    total_steps = steps_per_epoch * NUM_EPOCHS

    training_args = TrainingArguments(
        output_dir='./chemq3minipret',
        max_steps=total_steps,
        per_device_train_batch_size=BATCH_SIZE,
        per_device_eval_batch_size=BATCH_SIZE,
        gradient_accumulation_steps=GRAD_ACCUM_STEPS,
        logging_dir='./gptlo-1',
        logging_strategy="steps",
        logging_steps=max(1, steps_per_epoch // 4),
        eval_strategy="steps",
        eval_steps=max(1, steps_per_epoch // 4),
        save_strategy="steps",
        save_steps=steps_per_epoch,  # Save every epoch
        save_total_limit=1,
        dataloader_num_workers=0,
        dataloader_pin_memory=False,
        remove_unused_columns=False,
        prediction_loss_only=False,
        fp16=torch.cuda.is_available(),
        gradient_checkpointing=True,
        dataloader_drop_last=True,
        report_to=None,
        include_for_metrics=INCLUDE_FOR_METRICS,
    )

    print("Initializing enhanced trainer with MTP capabilities...")
    trainer = EnhancedCustomTrainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=val_dataset,
        data_collator=data_collator,
        processing_class=tokenizer,
        callbacks=[
            LossLoggerCallback("training_losses.txt", with_timestamp=True),
            CheckpointEvery10PercentCallback("./chemq3minipret", total_steps)
        ]
    )

    model.set_mtp_training(True)
    print(" MTP training mode enabled")

    print("Starting enhanced training with MTP and Horizon Loss...")
    try:
        print("\n Phase 1: Warmup with standard Causal LM...")
        model.set_mtp_training(False)
        warmup_steps = max(1, total_steps // 5)
        
        # Update trainer args for warmup phase
        trainer.args.max_steps = warmup_steps
        trainer.train()
        print(f"\n Phase 1 completed. Warmup with {warmup_steps} steps finished.")
        
        print(f"\n Phase 2: Full MTP + Horizon Loss training...")
        print(f"Total training steps: {total_steps}")
        print(f"Training will save checkpoints at 10% intervals:")
        for i in range(1, 11):
            checkpoint_step = int(total_steps * i * 0.1)
            print(f"  - {i*10}%: Step {checkpoint_step}")
        
        model.set_mtp_training(True)
        # Reset max steps to total for the full training phase
        trainer.args.max_steps = total_steps
        trainer.train(resume_from_checkpoint=True)
        print("Enhanced training completed successfully!")
        trainer.save_model("./enhanced-qwen3-final")
        tokenizer.save_pretrained("./enhanced-qwen3-final")
        training_config = {
            "model_type": "ChemQ3MTPForCausalLM",
            "num_future_tokens": 3,
            "horizon_loss_enabled": True,
            "mtp_head_enabled": True,
            "training_phases": ["causal_lm_warmup", "mtp_horizon_training"],
            "total_parameters": count_parameters(model),
        }
        config_path = "./enhanced-qwen3-final/training_config.json"
        with open(config_path, "w") as f:
            json.dump(training_config, f, indent=2)
        print(f" Enhanced model, tokenizer, and config saved!")
    except Exception as e:
        print(f"Enhanced training failed with error: {e}")
        import traceback
        traceback.print_exc()
        return

    print("\nmTesting enhanced generation capabilities...")
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    model.to(device)
    model.eval()
    try:
        print("\n--- Standard Generation Test ---")
        input_ids = tokenizer("<s> [C]", return_tensors="pt").input_ids.to(device)
        with torch.no_grad():
            model.set_mtp_training(False)
            gen = model.generate(
                input_ids,
                max_length=25,
                top_k=50,
                top_p=0.9,
                temperature=1.0,
                do_sample=True,
                pad_token_id=tokenizer.pad_token_id,
                eos_token_id=tokenizer.eos_token_id,
                num_return_sequences=3,
            )
            for i, sequence in enumerate(gen):
                result = tokenizer.decode(sequence, skip_special_tokens=True)
                print(f"Generated SELFIES {i+1}: {result}")
        print("\n--- MTP Analysis Test ---")
        test_smiles = "[C]"
        test_input = tokenizer(test_smiles, return_tensors="pt", add_special_tokens=True).to(device)
        test_input = {k: v for k, v in test_input.items() if k != 'token_type_ids'}  # Remove token_type_ids
        with torch.no_grad():
            outputs = model(**test_input)
            if hasattr(model, 'mtp_head') and hasattr(model.mtp_head, 'prediction_heads'):
                hidden_states = model.model(test_input['input_ids']).last_hidden_state
                mtp_outputs = model.mtp_head(hidden_states)
                print(f"Input SELFIES: {test_smiles}")
                print(f"Tokenized: {tokenizer.convert_ids_to_tokens(test_input['input_ids'][0].tolist())}")
                for i, (key, logits) in enumerate(mtp_outputs.items()):
                    top_tokens = torch.topk(logits[0], k=3, dim=-1)
                    print(f"\n{key} predictions:")
                    for pos in range(min(5, logits.size(1))):
                        pos_preds = []
                        for j in range(3):
                            token_id = top_tokens.indices[pos, j].item()
                            prob = torch.softmax(logits[0, pos], dim=-1)[token_id].item()
                            token = tokenizer.id_to_token.get(token_id, '<UNK>')
                            pos_preds.append(f"{token}({prob:.3f})")
                        print(f"  Position {pos}: {', '.join(pos_preds)}")
        print("\nEnhanced generation tests completed!")
    except Exception as e:
        print(f"Enhanced generation test failed: {e}")
        import traceback
        traceback.print_exc()

    print("\nEnhanced Model Analysis:")
    print(f"Total parameters: {count_parameters(model):,}")
    mtp_params = sum(p.numel() for p in model.mtp_head.parameters() if p.requires_grad)
    horizon_params = sum(p.numel() for p in model.horizon_loss.parameters() if p.requires_grad)
    base_params = count_parameters(model) - mtp_params - horizon_params
    print(f"Base model parameters: {base_params:,}")
    print(f"MTP head parameters: {mtp_params:,}")
    print(f"Horizon loss parameters: {horizon_params:,}")
    print(f"Enhancement overhead: {((mtp_params + horizon_params) / base_params * 100):.2f}%")
    print(f"\n Enhanced Model Architecture:")
    print(f"- Base Model: Qwen2 with {config.num_hidden_layers} layers")  # Updated this line
    print(f"- Hidden Size: {config.hidden_size}")
    print(f"- Attention Heads: {config.num_attention_heads}")
    print(f"- Vocab Size: {config.vocab_size}")
    print(f"- MTP Future Tokens: {model.mtp_head.num_future_tokens}")
    print(f"- Horizon Loss Weights: Learnable")
    print(f"- Training Mode: {'MTP + Horizon Loss' if model.use_mtp_training else 'Standard Causal LM'}")
    print("\n Enhanced training pipeline completed successfully!")

if __name__ == "__main__":
    main()