# evaluate_molecular_model.py # now with Durrant's lab filtering in validity check import os import sys import json import argparse import random from typing import List, Optional from tqdm import tqdm import torch from rdkit import Chem from rdkit.Chem import AllChem from rdkit import RDLogger import selfies as sf import pandas as pd # Suppress RDKit warnings RDLogger.DisableLog('rdApp.*') # Add local path sys.path.insert(0, os.path.dirname(os.path.abspath(__file__))) from FastChemTokenizerHF import FastChemTokenizerSelfies from ChemQ3MTP import ChemQ3MTPForCausalLM # ---------------------------- # Robust Conversion & Validation (as per your spec) # ---------------------------- def selfies_to_smiles(selfies_str: str) -> Optional[str]: """Convert SELFIES string to SMILES, handling tokenizer artifacts.""" try: clean_selfies = selfies_str.replace(" ", "") return sf.decoder(clean_selfies) except Exception: return None def is_valid_smiles(smiles: str) -> bool: """ Check if a SMILES string represents a valid molecule. FIXED: Now properly checks for heavy atoms (non-hydrogens) >= 3 and rejects disconnected/separated molecules """ if not isinstance(smiles, str) or len(smiles.strip()) == 0: return False smiles = smiles.strip() # FAST CHECK: Reject separated molecules (contains dots) if '.' in smiles: return False # Disconnected components indicated by dots try: mol = Chem.MolFromSmiles(smiles) if mol is None: return False # CRITICAL FIX: Check heavy atoms (non-hydrogens), not total atoms heavy_atoms = mol.GetNumHeavyAtoms() # This excludes hydrogens if heavy_atoms < 3: return False return True except Exception: return False def passes_durrant_lab_filter(smiles: str) -> bool: """ Apply Durrant's lab filter to remove improbable substructures. FIXED: More robust error handling, pattern checking, and disconnected molecule rejection. Returns True if molecule passes the filter (is acceptable), False otherwise. """ if not smiles or not isinstance(smiles, str) or len(smiles.strip()) == 0: return False try: mol = Chem.MolFromSmiles(smiles.strip()) if mol is None: return False # Check heavy atoms again (belt and suspenders approach) if mol.GetNumHeavyAtoms() < 3: return False # REJECT SEPARATED/DISCONNECTED MOLECULES (double check here too) fragments = Chem.rdmolops.GetMolFrags(mol, asMols=False) if len(fragments) > 1: return False # Reject molecules with multiple disconnected parts # Define SMARTS patterns for problematic substructures problematic_patterns = [ "C=[N-]", # Carbon double bonded to negative nitrogen "[N-]C=[N+]", # Nitrogen anion bonded to nitrogen cation "[nH+]c[n-]", # Aromatic nitrogen cation adjacent to nitrogen anion "[#7+]~[#7+]", # Positive nitrogen connected to positive nitrogen "[#7-]~[#7-]", # Negative nitrogen connected to negative nitrogen "[!#7]~[#7+]~[#7-]~[!#7]", # Bridge: non-nitrogen - pos nitrogen - neg nitrogen - non-nitrogen "[#5]", # Boron atoms "O=[PH](=O)([#8])([#8])", # Phosphoryl with hydroxyls "N=c1cc[#7]c[#7]1", # Nitrogen in aromatic ring with another nitrogen "[$([NX2H1]),$([NX3H2])]=C[$([OH]),$([O-])]", # N=CH-OH or N=CH-O- ] # Check for metals (excluding common biologically relevant ions) metal_exclusions = {11, 12, 19, 20} # Na, Mg, K, Ca for atom in mol.GetAtoms(): atomic_num = atom.GetAtomicNum() # More precise metal detection if atomic_num > 20 and atomic_num not in metal_exclusions: return False # Check for each problematic pattern for pattern in problematic_patterns: try: patt_mol = Chem.MolFromSmarts(pattern) if patt_mol is not None: matches = mol.GetSubstructMatches(patt_mol) if matches: return False # Found problematic substructure except Exception: # If SMARTS parsing fails, continue to next pattern continue return True # Passed all checks except Exception: return False def get_sa_label_and_confidence(selfies_str: str) -> tuple[str, float]: """Get SA label (Easy/Hard) and confidence from the model's SA classifier.""" try: from ChemQ3MTP.rl_utils import get_sa_classifier classifier = get_sa_classifier() if classifier is None: return "Unknown", 0.0 # Get raw classifier output: [{'label': 'Easy', 'score': 0.9187200665473938}] result = classifier(selfies_str, truncation=True, max_length=128)[0] return result["label"], result["score"] except Exception as e: return "Unknown", 0.0 def get_morgan_fingerprint_from_smiles(smiles: str, radius=2, n_bits=2048): mol = Chem.MolFromSmiles(smiles) if mol is None: return None return AllChem.GetMorganFingerprintAsBitVect(mol, radius, nBits=n_bits) def tanimoto_sim(fp1, fp2): from rdkit.DataStructs import TanimotoSimilarity return TanimotoSimilarity(fp1, fp2) # ---------------------------- # Main Evaluation Function # ---------------------------- def evaluate_model( model_path: str, train_data_path: str = "../data/chunk_5.csv", n_samples: int = 1000, seed: int = 42, max_gen_len: int = 32 ): torch.manual_seed(seed) random.seed(seed) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"๐Ÿš€ Evaluating model at: {model_path}") print(f" Device: {device} | Samples: {n_samples} | Seed: {seed}\n") # Load tokenizer and model tokenizer = FastChemTokenizerSelfies.from_pretrained("../selftok_core") model = ChemQ3MTPForCausalLM.from_pretrained(model_path) model.to(device) model.eval() # Load training set and normalize SELFIES (remove spaces) print("๐Ÿ“‚ Loading and normalizing training set for novelty...") train_df = pd.read_csv(train_data_path) train_selfies_clean = set() for s in train_df["SELFIES"].dropna().astype(str): clean_s = s.replace(" ", "") train_selfies_clean.add(clean_s) print(f" Training set size: {len(train_selfies_clean)} unique (space-free) SELFIES\n") # === MTP-AWARE GENERATION === print("GenerationStrategy: Using MTP-aware generation...") all_selfies_raw = [] batch_size = 32 num_batches = (n_samples + batch_size - 1) // batch_size with torch.no_grad(): for _ in tqdm(range(num_batches), desc="Generating"): current_batch_size = min(batch_size, n_samples - len(all_selfies_raw)) if current_batch_size <= 0: break input_ids = torch.full( (current_batch_size, 1), tokenizer.bos_token_id, dtype=torch.long, device=device ) if hasattr(model, 'generate_with_logprobs'): try: outputs = model.generate_with_logprobs( input_ids=input_ids, max_new_tokens=25, temperature=1.0, top_k=50, top_p=0.95, do_sample=True, return_probs=True, tokenizer=tokenizer ) batch_selfies = outputs[0] # list of raw SELFIES (may have spaces) except Exception as e: print(f"โš ๏ธ MTP generation failed: {e}. Falling back.") gen_tokens = model.generate( input_ids, max_length=max_gen_len, do_sample=True, top_k=50, top_p=0.95, temperature=1.0, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id ) batch_selfies = [ tokenizer.decode(seq, skip_special_tokens=True) for seq in gen_tokens ] else: gen_tokens = model.generate( input_ids, max_length=max_gen_len, do_sample=True, top_k=50, top_p=0.95, temperature=1.0, pad_token_id=tokenizer.pad_token_id, eos_token_id=tokenizer.eos_token_id ) batch_selfies = [ tokenizer.decode(seq, skip_special_tokens=True) for seq in gen_tokens ] all_selfies_raw.extend(batch_selfies) if len(all_selfies_raw) >= n_samples: break all_selfies_raw = all_selfies_raw[:n_samples] print(f"\nโœ… Generated {len(all_selfies_raw)} raw SELFIES strings.\n") # Process: SELFIES โ†’ clean SELFIES โ†’ SMILES โ†’ valid molecules valid_records = [] print("๐Ÿงช Processing SELFIES and converting to SMILES...") for i, raw_selfies in enumerate(tqdm(all_selfies_raw, desc="Converting")): # Clean the SELFIES (remove spaces as tokenizer uses whitespace) clean_selfies = raw_selfies.replace(" ", "") # Convert to SMILES smiles = selfies_to_smiles(clean_selfies) if smiles is not None and is_valid_smiles(smiles) and passes_durrant_lab_filter(smiles): valid_records.append({ "raw_selfies": raw_selfies, "selfies_clean": clean_selfies, "selfies": clean_selfies, # canonical version "smiles": smiles.strip() }) # >>> DEBUG: Print multiple examples and SA label analysis <<< if valid_records: print("\n๐Ÿ” DEBUG: Sample generated molecules") print("-" * 70) for i in range(min(5, len(valid_records))): example = valid_records[i] print(f"Example {i+1}:") print(f" Raw SELFIES : {example['raw_selfies'][:80]}{'...' if len(example['raw_selfies']) > 80 else ''}") print(f" SMILES : {example['smiles']}") # Get SA label and confidence label, confidence = get_sa_label_and_confidence(example['raw_selfies']) print(f" SA Label : {label} (confidence: {confidence:.3f})") if i == 0: # Test SA classifier with simple molecules simple_label, simple_conf = get_sa_label_and_confidence('[C]') benzene_label, benzene_conf = get_sa_label_and_confidence('[c] [c] [c] [c] [c] [c] [Ring1] [=Branch1]') print(f" ๐Ÿงช SA Test - Simple molecule: {simple_label} ({simple_conf:.3f})") print(f" ๐Ÿงช SA Test - Benzene: {benzene_label} ({benzene_conf:.3f})") # Check molecule properties mol = Chem.MolFromSmiles(example['smiles']) if mol: print(f" Atoms : {mol.GetNumAtoms()}") print(f" Bonds : {mol.GetNumBonds()}") print() print("-" * 70) # SA Label distribution analysis sa_labels = [] for r in valid_records[:100]: label, _ = get_sa_label_and_confidence(r["raw_selfies"]) sa_labels.append(label) easy_count = sa_labels.count("Easy") hard_count = sa_labels.count("Hard") unknown_count = sa_labels.count("Unknown") print(f"๐Ÿ” SA Label Analysis (first 100 molecules):") print(f" Easy to synthesize: {easy_count}/100 ({easy_count}%)") print(f" Hard to synthesize: {hard_count}/100 ({hard_count}%)") if unknown_count > 0: print(f" Unknown/Failed: {unknown_count}/100 ({unknown_count}%)") else: print("\nโš ๏ธ WARNING: No valid molecules generated in sample!") # <<< END DEBUG >>> # Now compute metrics... validity = len(valid_records) / n_samples unique_valid = list({r["selfies_clean"]: r for r in valid_records}.values()) uniqueness = len(unique_valid) / len(valid_records) if valid_records else 0.0 novel_count = sum(1 for r in unique_valid if r["selfies_clean"] not in train_selfies_clean) novelty = novel_count / len(unique_valid) if unique_valid else 0.0 # SA Label Counts (using model's SA classifier) sa_labels_all = [] for r in unique_valid: label, _ = get_sa_label_and_confidence(r["raw_selfies"]) sa_labels_all.append(label) easy_total = sa_labels_all.count("Easy") hard_total = sa_labels_all.count("Hard") unknown_total = sa_labels_all.count("Unknown") total_labeled = len(sa_labels_all) # Internal Diversity (on SMILES) if len(unique_valid) >= 2: fps = [] for r in unique_valid: fp = get_morgan_fingerprint_from_smiles(r["smiles"]) if fp is not None: fps.append(fp) if len(fps) >= 2: total_sim, count = 0.0, 0 for i in range(len(fps)): for j in range(i + 1, len(fps)): total_sim += tanimoto_sim(fps[i], fps[j]) count += 1 internal_diversity = 1.0 - (total_sim / count) else: internal_diversity = 0.0 else: internal_diversity = 0.0 # ---------------------------- # Final Summary # ---------------------------- print("\n" + "="*55) print("๐Ÿ“Š MOLECULAR GENERATION EVALUATION SUMMARY") print("="*55) print(f"Model Path : {model_path}") print(f"Generation Mode : {'MTP-aware' if hasattr(model, 'generate_with_logprobs') else 'Standard'}") print(f"Samples Generated: {n_samples}") print("-"*55) print(f"Validity : {validity:.4f} ({len(valid_records)}/{n_samples})") print(f"Uniqueness : {uniqueness:.4f} (unique valid)") print(f"Novelty (vs train): {novelty:.4f} (space-free SELFIES)") print(f"Synthesis Labels : Easy: {easy_total}/{total_labeled} ({easy_total/max(1,total_labeled)*100:.1f}%) | Hard: {hard_total}/{total_labeled} ({hard_total/max(1,total_labeled)*100:.1f}%)") if unknown_total > 0: print(f" Unknown: {unknown_total}/{total_labeled} ({unknown_total/max(1,total_labeled)*100:.1f}%)") print(f"Internal Diversity: {internal_diversity:.4f} (1 - avg Tanimoto)") print("="*55) results = { "model_path": model_path, "generation_mode": "MTP-aware" if hasattr(model, 'generate_with_logprobs') else "standard", "n_samples": n_samples, "validity": validity, "uniqueness": uniqueness, "novelty": novelty, "sa_easy_count": easy_total, "sa_hard_count": hard_total, "sa_easy_percentage": easy_total/max(1,total_labeled)*100, "sa_hard_percentage": hard_total/max(1,total_labeled)*100, "internal_diversity": internal_diversity, "valid_molecules_count": len(valid_records) } if unknown_total > 0: results["sa_unknown_count"] = unknown_total results["sa_unknown_percentage"] = unknown_total/max(1,total_labeled)*100 output_json = os.path.join(model_path, "evaluation_summary.json") with open(output_json, "w") as f: json.dump(results, f, indent=2) print(f"\n๐Ÿ’พ Results saved to: {output_json}") return results # ---------------------------- # CLI # ---------------------------- if __name__ == "__main__": parser = argparse.ArgumentParser(description="Evaluate molecular generative model with MTP-aware generation") parser.add_argument("--model_path", type=str, required=True, help="Path to model checkpoint") parser.add_argument("--n_samples", type=int, default=1000, help="Number of molecules to generate") parser.add_argument("--seed", type=int, default=42, help="Random seed") parser.add_argument("--train_data", type=str, default="../data/chunk_5.csv", help="Training data CSV") args = parser.parse_args() evaluate_model( model_path=args.model_path, train_data_path=args.train_data, n_samples=args.n_samples, seed=args.seed )