feat: upload inference script
Browse files- inference.py +35 -10
inference.py
CHANGED
|
@@ -1,18 +1,43 @@
|
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
import numpy as np
|
| 3 |
from openai import OpenAI
|
| 4 |
from transformers import AutoModel
|
| 5 |
|
| 6 |
-
texts = ["Eh you damn stupid lah!", "Have a nice day :)", "This is cool~"]
|
| 7 |
|
| 8 |
-
|
| 9 |
-
model
|
|
|
|
| 10 |
|
| 11 |
-
# Get embeddings (users to input their own OpenAI API key)
|
| 12 |
-
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
| 13 |
-
response = client.embeddings.create(input=texts, model="text-embedding-3-large")
|
| 14 |
-
embeddings = np.array([data.embedding for data in response.data])
|
| 15 |
|
| 16 |
-
# Run inference
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
import os
|
| 3 |
+
import sys
|
| 4 |
import numpy as np
|
| 5 |
from openai import OpenAI
|
| 6 |
from transformers import AutoModel
|
| 7 |
|
|
|
|
| 8 |
|
| 9 |
+
def infer(texts):
|
| 10 |
+
# Load model directly from Hub
|
| 11 |
+
model = AutoModel.from_pretrained("govtech/lionguard-2", trust_remote_code=True)
|
| 12 |
|
| 13 |
+
# Get embeddings (users to input their own OpenAI API key)
|
| 14 |
+
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
|
| 15 |
+
response = client.embeddings.create(input=texts, model="text-embedding-3-large")
|
| 16 |
+
embeddings = np.array([data.embedding for data in response.data])
|
| 17 |
|
| 18 |
+
# Run inference
|
| 19 |
+
results = model.predict(embeddings)
|
| 20 |
+
return results
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
if __name__ == "__main__":
|
| 24 |
+
|
| 25 |
+
# Load the data
|
| 26 |
+
try:
|
| 27 |
+
input_data = sys.argv[1]
|
| 28 |
+
batch_text = json.loads(input_data)
|
| 29 |
+
print("Using provided input texts")
|
| 30 |
+
|
| 31 |
+
except (json.JSONDecodeError, IndexError) as e:
|
| 32 |
+
print(f"Error parsing input data: {e}")
|
| 33 |
+
print("Falling back to default sample texts")
|
| 34 |
+
|
| 35 |
+
batch_text = ["Eh you damn stupid lah!", "Have a nice day :)"]
|
| 36 |
+
|
| 37 |
+
# Generate the scores and predictions
|
| 38 |
+
results = infer(batch_text)
|
| 39 |
+
for i in range(len(batch_text)):
|
| 40 |
+
print(f"Text: '{batch_text[i]}'")
|
| 41 |
+
for category in results.keys():
|
| 42 |
+
print(f"[Text {i+1}] {category} score: {results[category][i]:.4f}")
|
| 43 |
+
print("---------------------------------------------")
|