--- library_name: peft license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer model-index: - name: results_multilabel_lora results: [] --- # results_multilabel_lora This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.3776 - Exact Match Accuracy: 0.76 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Exact Match Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------------------:| | No log | 1.0 | 50 | 0.4173 | 0.75 | | No log | 2.0 | 100 | 0.3948 | 0.75 | | No log | 3.0 | 150 | 0.3874 | 0.76 | | No log | 4.0 | 200 | 0.3834 | 0.76 | | No log | 5.0 | 250 | 0.3807 | 0.76 | | No log | 6.0 | 300 | 0.3797 | 0.76 | | No log | 7.0 | 350 | 0.3788 | 0.76 | | No log | 8.0 | 400 | 0.3779 | 0.76 | | No log | 9.0 | 450 | 0.3777 | 0.76 | | 0.3811 | 10.0 | 500 | 0.3776 | 0.76 | ### Framework versions - PEFT 0.14.0 - Transformers 4.50.0 - Pytorch 2.6.0+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1