| 
							 | 
						import torch | 
					
					
						
						| 
							 | 
						import torchvision.transforms as T | 
					
					
						
						| 
							 | 
						from PIL import Image | 
					
					
						
						| 
							 | 
						from torchvision.transforms.functional import InterpolationMode | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						IMAGENET_MEAN = (0.485, 0.456, 0.406) | 
					
					
						
						| 
							 | 
						IMAGENET_STD = (0.229, 0.224, 0.225) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def build_transform(input_size): | 
					
					
						
						| 
							 | 
						    MEAN, STD = IMAGENET_MEAN, IMAGENET_STD | 
					
					
						
						| 
							 | 
						    transform = T.Compose([ | 
					
					
						
						| 
							 | 
						        T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), | 
					
					
						
						| 
							 | 
						        T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), | 
					
					
						
						| 
							 | 
						        T.ToTensor(), | 
					
					
						
						| 
							 | 
						        T.Normalize(mean=MEAN, std=STD) | 
					
					
						
						| 
							 | 
						    ]) | 
					
					
						
						| 
							 | 
						    return transform | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size): | 
					
					
						
						| 
							 | 
						    best_ratio_diff = float('inf') | 
					
					
						
						| 
							 | 
						    best_ratio = (1, 1) | 
					
					
						
						| 
							 | 
						    area = width * height | 
					
					
						
						| 
							 | 
						    for ratio in target_ratios: | 
					
					
						
						| 
							 | 
						        target_aspect_ratio = ratio[0] / ratio[1] | 
					
					
						
						| 
							 | 
						        ratio_diff = abs(aspect_ratio - target_aspect_ratio) | 
					
					
						
						| 
							 | 
						        if ratio_diff < best_ratio_diff: | 
					
					
						
						| 
							 | 
						            best_ratio_diff = ratio_diff | 
					
					
						
						| 
							 | 
						            best_ratio = ratio | 
					
					
						
						| 
							 | 
						        elif ratio_diff == best_ratio_diff: | 
					
					
						
						| 
							 | 
						            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: | 
					
					
						
						| 
							 | 
						                best_ratio = ratio | 
					
					
						
						| 
							 | 
						    return best_ratio | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def dynamic_preprocess(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False): | 
					
					
						
						| 
							 | 
						    orig_width, orig_height = image.size | 
					
					
						
						| 
							 | 
						    aspect_ratio = orig_width / orig_height | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    target_ratios = set( | 
					
					
						
						| 
							 | 
						        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if | 
					
					
						
						| 
							 | 
						        i * j <= max_num and i * j >= min_num) | 
					
					
						
						| 
							 | 
						    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    target_aspect_ratio = find_closest_aspect_ratio( | 
					
					
						
						| 
							 | 
						        aspect_ratio, target_ratios, orig_width, orig_height, image_size) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    target_width = image_size * target_aspect_ratio[0] | 
					
					
						
						| 
							 | 
						    target_height = image_size * target_aspect_ratio[1] | 
					
					
						
						| 
							 | 
						    blocks = target_aspect_ratio[0] * target_aspect_ratio[1] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    resized_img = image.resize((target_width, target_height)) | 
					
					
						
						| 
							 | 
						    processed_images = [] | 
					
					
						
						| 
							 | 
						    for i in range(blocks): | 
					
					
						
						| 
							 | 
						        box = ( | 
					
					
						
						| 
							 | 
						            (i % (target_width // image_size)) * image_size, | 
					
					
						
						| 
							 | 
						            (i // (target_width // image_size)) * image_size, | 
					
					
						
						| 
							 | 
						            ((i % (target_width // image_size)) + 1) * image_size, | 
					
					
						
						| 
							 | 
						            ((i // (target_width // image_size)) + 1) * image_size | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        split_img = resized_img.crop(box) | 
					
					
						
						| 
							 | 
						        processed_images.append(split_img) | 
					
					
						
						| 
							 | 
						    assert len(processed_images) == blocks | 
					
					
						
						| 
							 | 
						    if use_thumbnail and len(processed_images) != 1: | 
					
					
						
						| 
							 | 
						        thumbnail_img = image.resize((image_size, image_size)) | 
					
					
						
						| 
							 | 
						        processed_images.append(thumbnail_img) | 
					
					
						
						| 
							 | 
						    return processed_images, target_aspect_ratio | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def dynamic_preprocess2(image, min_num=1, max_num=6, image_size=448, use_thumbnail=False, prior_aspect_ratio=None): | 
					
					
						
						| 
							 | 
						    orig_width, orig_height = image.size | 
					
					
						
						| 
							 | 
						    aspect_ratio = orig_width / orig_height | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    target_ratios = set( | 
					
					
						
						| 
							 | 
						        (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if | 
					
					
						
						| 
							 | 
						        i * j <= max_num and i * j >= min_num) | 
					
					
						
						| 
							 | 
						    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						    new_target_ratios = [] | 
					
					
						
						| 
							 | 
						    if prior_aspect_ratio is not None: | 
					
					
						
						| 
							 | 
						        for i in target_ratios: | 
					
					
						
						| 
							 | 
						            if prior_aspect_ratio[0]%i[0] != 0 and prior_aspect_ratio[1]%i[1] != 0: | 
					
					
						
						| 
							 | 
						                new_target_ratios.append(i) | 
					
					
						
						| 
							 | 
						            else: | 
					
					
						
						| 
							 | 
						                continue | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    target_aspect_ratio = find_closest_aspect_ratio( | 
					
					
						
						| 
							 | 
						        aspect_ratio, new_target_ratios, orig_width, orig_height, image_size) | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    target_width = image_size * target_aspect_ratio[0] | 
					
					
						
						| 
							 | 
						    target_height = image_size * target_aspect_ratio[1] | 
					
					
						
						| 
							 | 
						    blocks = target_aspect_ratio[0] * target_aspect_ratio[1] | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    resized_img = image.resize((target_width, target_height)) | 
					
					
						
						| 
							 | 
						    processed_images = [] | 
					
					
						
						| 
							 | 
						    for i in range(blocks): | 
					
					
						
						| 
							 | 
						        box = ( | 
					
					
						
						| 
							 | 
						            (i % (target_width // image_size)) * image_size, | 
					
					
						
						| 
							 | 
						            (i // (target_width // image_size)) * image_size, | 
					
					
						
						| 
							 | 
						            ((i % (target_width // image_size)) + 1) * image_size, | 
					
					
						
						| 
							 | 
						            ((i // (target_width // image_size)) + 1) * image_size | 
					
					
						
						| 
							 | 
						        ) | 
					
					
						
						| 
							 | 
						         | 
					
					
						
						| 
							 | 
						        split_img = resized_img.crop(box) | 
					
					
						
						| 
							 | 
						        processed_images.append(split_img) | 
					
					
						
						| 
							 | 
						    assert len(processed_images) == blocks | 
					
					
						
						| 
							 | 
						    if use_thumbnail and len(processed_images) != 1: | 
					
					
						
						| 
							 | 
						        thumbnail_img = image.resize((image_size, image_size)) | 
					
					
						
						| 
							 | 
						        processed_images.append(thumbnail_img) | 
					
					
						
						| 
							 | 
						    return processed_images | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def load_image1(image_file, input_size=448, min_num=1, max_num=12): | 
					
					
						
						| 
							 | 
						    image = Image.open(image_file).convert('RGB') | 
					
					
						
						| 
							 | 
						    transform = build_transform(input_size=input_size) | 
					
					
						
						| 
							 | 
						    images, target_aspect_ratio = dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, min_num=min_num, max_num=max_num) | 
					
					
						
						| 
							 | 
						    pixel_values = [transform(image) for image in images] | 
					
					
						
						| 
							 | 
						    pixel_values = torch.stack(pixel_values) | 
					
					
						
						| 
							 | 
						    return pixel_values, target_aspect_ratio | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def load_image2(image_file, input_size=448, min_num=1, max_num=12, target_aspect_ratio=None): | 
					
					
						
						| 
							 | 
						    image = Image.open(image_file).convert('RGB') | 
					
					
						
						| 
							 | 
						    transform = build_transform(input_size=input_size) | 
					
					
						
						| 
							 | 
						    images = dynamic_preprocess2(image, image_size=input_size, use_thumbnail=True, min_num=min_num, max_num=max_num, prior_aspect_ratio=target_aspect_ratio) | 
					
					
						
						| 
							 | 
						    pixel_values = [transform(image) for image in images] | 
					
					
						
						| 
							 | 
						    pixel_values = torch.stack(pixel_values) | 
					
					
						
						| 
							 | 
						    return pixel_values | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def load_single_image(file_name, max_num=6, msac=False): | 
					
					
						
						| 
							 | 
						    pixel_values, target_aspect_ratio = load_image1(file_name, min_num=1, max_num=max_num) | 
					
					
						
						| 
							 | 
						    pixel_values = pixel_values.to(torch.bfloat16).cuda() | 
					
					
						
						| 
							 | 
						    if not msac: | 
					
					
						
						| 
							 | 
						        num_patches_list = [pixel_values.size(0)] | 
					
					
						
						| 
							 | 
						        return pixel_values, num_patches_list | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    pixel_values2 = load_image2(file_name, min_num=3, max_num=max_num, target_aspect_ratio=target_aspect_ratio) | 
					
					
						
						| 
							 | 
						    pixel_values2 = pixel_values2.to(torch.bfloat16).cuda() | 
					
					
						
						| 
							 | 
						    pixel_values = torch.cat([pixel_values2[:-1], pixel_values[:-1], pixel_values2[-1:]], dim=0).to(torch.bfloat16).cuda() | 
					
					
						
						| 
							 | 
						    num_patches_list = [pixel_values.size(0)]   | 
					
					
						
						| 
							 | 
						    return pixel_values, num_patches_list | 
					
					
						
						| 
							 | 
						
 | 
					
					
						
						| 
							 | 
						def load_multi_images(image_files, max_num=6): | 
					
					
						
						| 
							 | 
						    pixel_values_list = [] | 
					
					
						
						| 
							 | 
						    num_patches_list = [] | 
					
					
						
						| 
							 | 
						    for image_file in image_files: | 
					
					
						
						| 
							 | 
						        pixel_values, _ = load_image1(image_file, max_num=max_num) | 
					
					
						
						| 
							 | 
						        pixel_values = pixel_values.to(torch.bfloat16).cuda() | 
					
					
						
						| 
							 | 
						        pixel_values_list.append(pixel_values) | 
					
					
						
						| 
							 | 
						        num_patches_list.append(pixel_values.size(0)) | 
					
					
						
						| 
							 | 
						    pixel_values = torch.cat(pixel_values_list, dim=0) | 
					
					
						
						| 
							 | 
						     | 
					
					
						
						| 
							 | 
						    return pixel_values, num_patches_list |