SentenceTransformer based on sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("hatemestinbejaia/mmarco-Arabic-mMiniLML-bi-encoder-KD-v1-Nonormalisation")
# Run inference
sentences = [
'تحديد المسح',
'المسح أو مسح الأراضي هو تقنية ومهنة وعلم تحديد المواقع الأرضية أو ثلاثية الأبعاد للنقاط والمسافات والزوايا بينها . يطلق على أخصائي مسح الأراضي اسم مساح الأراضي .',
'إجمالي المحطات . تعد المحطات الإجمالية واحدة من أكثر أدوات المسح شيوعا المستخدمة اليوم . وهي تتألف من جهاز ثيودوليت إلكتروني ومكون إلكتروني لقياس المسافة ( EDM ) . تتوفر أيضا محطات روبوتية كاملة تتيح التشغيل لشخص واحد من خلال التحكم في الجهاز باستخدام جهاز التحكم عن بعد . تاريخ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Reranking
- Evaluated with
RerankingEvaluator
| Metric | Value |
|---|---|
| map | 0.5526 |
| mrr@10 | 0.5566 |
| ndcg@10 | 0.6272 |
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 128learning_rate: 7e-05warmup_ratio: 0.07fp16: Truehalf_precision_backend: ampload_best_model_at_end: Truefp16_backend: amp
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 128per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 7e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 3max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.07warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: ampbf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Trueignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: amppush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional
Training Logs
| Epoch | Step | Training Loss | loss | map |
|---|---|---|---|---|
| 0.0512 | 2000 | 60.0645 | 39.7459 | 0.4997 |
| 0.1024 | 4000 | 38.1556 | 34.3446 | 0.4994 |
| 0.1536 | 6000 | 33.7868 | 32.9171 | 0.5159 |
| 0.2048 | 8000 | 31.8491 | 29.9714 | 0.5282 |
| 0.2560 | 10000 | 29.7765 | 29.9015 | 0.5078 |
| 0.3072 | 12000 | 27.5914 | 26.7202 | 0.5283 |
| 0.3584 | 14000 | 25.8129 | 25.0254 | 0.5430 |
| 0.4096 | 16000 | 24.0781 | 25.0622 | 0.5207 |
| 0.4608 | 18000 | 22.9328 | 23.7991 | 0.5433 |
| 0.5120 | 20000 | 21.7429 | 22.0272 | 0.5333 |
| 0.5632 | 22000 | 20.9529 | 20.9957 | 0.5485 |
| 0.6144 | 24000 | 19.9476 | 19.8111 | 0.5304 |
| 0.6656 | 26000 | 19.1556 | 19.2983 | 0.5363 |
| 0.7168 | 28000 | 18.5506 | 20.4461 | 0.5421 |
| 0.7680 | 30000 | 17.8418 | 19.6846 | 0.5192 |
| 0.8192 | 32000 | 17.4182 | 18.3179 | 0.5268 |
| 0.8704 | 34000 | 16.8575 | 18.5912 | 0.5401 |
| 0.9216 | 36000 | 16.4331 | 17.6217 | 0.5448 |
| 0.9728 | 38000 | 15.8319 | 16.4225 | 0.5469 |
| 1.0240 | 40000 | 14.5094 | 16.8592 | 0.5283 |
| 1.0752 | 42000 | 13.2263 | 15.6646 | 0.5511 |
| 1.1264 | 44000 | 12.9718 | 16.8053 | 0.5599 |
| 1.1776 | 46000 | 12.9135 | 16.9315 | 0.5557 |
| 1.2288 | 48000 | 12.6887 | 16.6569 | 0.5588 |
| 1.2800 | 50000 | 12.4705 | 15.5349 | 0.5569 |
| 1.3312 | 52000 | 12.3431 | 15.9067 | 0.5597 |
| 1.3824 | 54000 | 12.0741 | 15.0079 | 0.5668 |
| 1.4336 | 56000 | 11.9194 | 14.9333 | 0.5532 |
| 1.4848 | 58000 | 11.7261 | 14.3567 | 0.5598 |
| 1.5360 | 60000 | 11.5138 | 14.8380 | 0.5608 |
| 1.5872 | 62000 | 11.3494 | 13.7454 | 0.5544 |
| 1.6384 | 64000 | 11.116 | 14.3529 | 0.5527 |
| 1.6896 | 66000 | 11.0054 | 13.8486 | 0.5403 |
| 1.7408 | 68000 | 10.8677 | 13.8550 | 0.5598 |
| 1.7920 | 70000 | 10.6486 | 15.1113 | 0.5526 |
| 1.8432 | 72000 | 10.4977 | 13.7056 | 0.5580 |
| 1.8944 | 74000 | 10.3649 | 14.4802 | 0.5526 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.11.9
- Sentence Transformers: 3.1.1
- Transformers: 4.45.2
- PyTorch: 2.4.1+cu121
- Accelerate: 1.4.0
- Datasets: 3.2.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MarginMSELoss
@misc{hofstätter2021improving,
title={Improving Efficient Neural Ranking Models with Cross-Architecture Knowledge Distillation},
author={Sebastian Hofstätter and Sophia Althammer and Michael Schröder and Mete Sertkan and Allan Hanbury},
year={2021},
eprint={2010.02666},
archivePrefix={arXiv},
primaryClass={cs.IR}
}
- Downloads last month
- 2
Model tree for hatemestinbejaia/mmarco-Arabic-mMiniLML-bi-encoder-KD-v1-Nonormalisation
Evaluation results
- Map on Unknownself-reported0.553
- Mrr@10 on Unknownself-reported0.557
- Ndcg@10 on Unknownself-reported0.627