Commit
·
08ba7c1
1
Parent(s):
0784a51
Create check_perplexity.ipynb
Browse files- check_perplexity.ipynb +691 -0
check_perplexity.ipynb
ADDED
|
@@ -0,0 +1,691 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "markdown",
|
| 5 |
+
"metadata": {},
|
| 6 |
+
"source": [
|
| 7 |
+
"### Original GPT-J perlexity"
|
| 8 |
+
]
|
| 9 |
+
},
|
| 10 |
+
{
|
| 11 |
+
"cell_type": "code",
|
| 12 |
+
"execution_count": 1,
|
| 13 |
+
"metadata": {},
|
| 14 |
+
"outputs": [],
|
| 15 |
+
"source": [
|
| 16 |
+
"import torch\n",
|
| 17 |
+
"import torch.nn as nn\n",
|
| 18 |
+
"import torch.nn.functional as F\n",
|
| 19 |
+
"\n",
|
| 20 |
+
"from bitsandbytes.functional import quantize_blockwise, dequantize_blockwise\n",
|
| 21 |
+
"import transformers\n",
|
| 22 |
+
"from tqdm.auto import tqdm\n",
|
| 23 |
+
"\n",
|
| 24 |
+
"\n",
|
| 25 |
+
"\n",
|
| 26 |
+
"model_name = \"EleutherAI/gpt-j-6B\"\n",
|
| 27 |
+
"gpt = transformers.AutoModelForCausalLM.from_pretrained(model_name)\n",
|
| 28 |
+
"tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)"
|
| 29 |
+
]
|
| 30 |
+
},
|
| 31 |
+
{
|
| 32 |
+
"cell_type": "code",
|
| 33 |
+
"execution_count": 11,
|
| 34 |
+
"metadata": {},
|
| 35 |
+
"outputs": [],
|
| 36 |
+
"source": [
|
| 37 |
+
"device = 'cuda' if torch.cuda.is_available else 'cpu'\n",
|
| 38 |
+
"gpt.to(device).train(False);"
|
| 39 |
+
]
|
| 40 |
+
},
|
| 41 |
+
{
|
| 42 |
+
"cell_type": "code",
|
| 43 |
+
"execution_count": 4,
|
| 44 |
+
"metadata": {},
|
| 45 |
+
"outputs": [
|
| 46 |
+
{
|
| 47 |
+
"name": "stderr",
|
| 48 |
+
"output_type": "stream",
|
| 49 |
+
"text": [
|
| 50 |
+
"Reusing dataset wikitext (/home/jheuristic/.cache/huggingface/datasets/wikitext/wikitext-2-v1/1.0.0/a241db52902eaf2c6aa732210bead40c090019a499ceb13bcbfa3f8ab646a126)\n"
|
| 51 |
+
]
|
| 52 |
+
},
|
| 53 |
+
{
|
| 54 |
+
"data": {
|
| 55 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 56 |
+
"model_id": "47f0459174da4ee2bf064c9ae81fdecd",
|
| 57 |
+
"version_major": 2,
|
| 58 |
+
"version_minor": 0
|
| 59 |
+
},
|
| 60 |
+
"text/plain": [
|
| 61 |
+
" 0%| | 0/3 [00:00<?, ?it/s]"
|
| 62 |
+
]
|
| 63 |
+
},
|
| 64 |
+
"metadata": {},
|
| 65 |
+
"output_type": "display_data"
|
| 66 |
+
}
|
| 67 |
+
],
|
| 68 |
+
"source": [
|
| 69 |
+
"from datasets import load_dataset\n",
|
| 70 |
+
"data = load_dataset('wikitext', 'wikitext-2-v1')['test']"
|
| 71 |
+
]
|
| 72 |
+
},
|
| 73 |
+
{
|
| 74 |
+
"cell_type": "code",
|
| 75 |
+
"execution_count": 62,
|
| 76 |
+
"metadata": {},
|
| 77 |
+
"outputs": [
|
| 78 |
+
{
|
| 79 |
+
"data": {
|
| 80 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 81 |
+
"model_id": "26cca02205624aafa740e55542ca2e6c",
|
| 82 |
+
"version_major": 2,
|
| 83 |
+
"version_minor": 0
|
| 84 |
+
},
|
| 85 |
+
"text/plain": [
|
| 86 |
+
" 0%| | 0/4358 [00:00<?, ?it/s]"
|
| 87 |
+
]
|
| 88 |
+
},
|
| 89 |
+
"metadata": {},
|
| 90 |
+
"output_type": "display_data"
|
| 91 |
+
}
|
| 92 |
+
],
|
| 93 |
+
"source": [
|
| 94 |
+
"\n",
|
| 95 |
+
"numerator, denominator = 0, 0\n",
|
| 96 |
+
"collator = transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False)\n",
|
| 97 |
+
"loader = torch.utils.data.DataLoader(data, batch_size=1, num_workers=0, shuffle=False)\n",
|
| 98 |
+
"\n",
|
| 99 |
+
"\n",
|
| 100 |
+
"with torch.no_grad(), torch.cuda.amp.autocast(), tqdm(loader) as progressbar:\n",
|
| 101 |
+
" for i, row in enumerate(progressbar):\n",
|
| 102 |
+
" if max(map(len, row['text'])) <= 1:\n",
|
| 103 |
+
" continue\n",
|
| 104 |
+
" batch = tokenizer(**row, truncation=False, return_tensors='pt')\n",
|
| 105 |
+
" batch = {k: v.cuda() for k, v in batch.items()}\n",
|
| 106 |
+
"\n",
|
| 107 |
+
" out = gpt.forward(**batch,)\n",
|
| 108 |
+
"\n",
|
| 109 |
+
" loss = F.cross_entropy(out.logits[:, :-1, :].flatten(0, -2), batch['input_ids'][:, 1:].flatten(),\n",
|
| 110 |
+
" reduction='none')\n",
|
| 111 |
+
"\n",
|
| 112 |
+
" numerator += loss.sum().item()\n",
|
| 113 |
+
" denominator += len(loss)\n",
|
| 114 |
+
" progressbar.desc = f\"{numerator/denominator:.3f}\""
|
| 115 |
+
]
|
| 116 |
+
},
|
| 117 |
+
{
|
| 118 |
+
"cell_type": "code",
|
| 119 |
+
"execution_count": 63,
|
| 120 |
+
"metadata": {},
|
| 121 |
+
"outputs": [
|
| 122 |
+
{
|
| 123 |
+
"data": {
|
| 124 |
+
"text/plain": [
|
| 125 |
+
"18.435175441788164"
|
| 126 |
+
]
|
| 127 |
+
},
|
| 128 |
+
"execution_count": 63,
|
| 129 |
+
"metadata": {},
|
| 130 |
+
"output_type": "execute_result"
|
| 131 |
+
}
|
| 132 |
+
],
|
| 133 |
+
"source": [
|
| 134 |
+
"# test perplexity\n",
|
| 135 |
+
"import math\n",
|
| 136 |
+
"math.exp(numerator/denominator)"
|
| 137 |
+
]
|
| 138 |
+
},
|
| 139 |
+
{
|
| 140 |
+
"cell_type": "markdown",
|
| 141 |
+
"metadata": {},
|
| 142 |
+
"source": [
|
| 143 |
+
"### Quantized GPT-J Perplexity"
|
| 144 |
+
]
|
| 145 |
+
},
|
| 146 |
+
{
|
| 147 |
+
"cell_type": "code",
|
| 148 |
+
"execution_count": 64,
|
| 149 |
+
"metadata": {},
|
| 150 |
+
"outputs": [],
|
| 151 |
+
"source": [
|
| 152 |
+
"\n",
|
| 153 |
+
"import torch\n",
|
| 154 |
+
"import torch.nn as nn\n",
|
| 155 |
+
"from torch.cuda.amp import custom_fwd, custom_bwd\n",
|
| 156 |
+
" \n",
|
| 157 |
+
"from bitsandbytes.functional import quantize_blockwise, dequantize_blockwise\n",
|
| 158 |
+
"import transformers\n",
|
| 159 |
+
"\n",
|
| 160 |
+
"\n",
|
| 161 |
+
"class DequantizeAndLinear(torch.autograd.Function):\n",
|
| 162 |
+
" \n",
|
| 163 |
+
" @staticmethod\n",
|
| 164 |
+
" @custom_fwd\n",
|
| 165 |
+
" def forward(ctx, input: torch.Tensor, weights_quantized: torch.ByteTensor,\n",
|
| 166 |
+
" absmax: torch.FloatTensor, code: torch.FloatTensor, bias: torch.FloatTensor):\n",
|
| 167 |
+
" weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)\n",
|
| 168 |
+
" ctx.save_for_backward(input, weights_quantized, absmax, code)\n",
|
| 169 |
+
" ctx._has_bias = bias is not None\n",
|
| 170 |
+
" return F.linear(input, weights_deq, bias)\n",
|
| 171 |
+
" \n",
|
| 172 |
+
" @staticmethod\n",
|
| 173 |
+
" @custom_bwd\n",
|
| 174 |
+
" def backward(ctx, grad_output: torch.Tensor):\n",
|
| 175 |
+
" assert not ctx.needs_input_grad[1] and not ctx.needs_input_grad[2] and not ctx.needs_input_grad[3]\n",
|
| 176 |
+
" input, weights_quantized, absmax, code = ctx.saved_tensors\n",
|
| 177 |
+
" # grad_output: [*batch, out_features]\n",
|
| 178 |
+
" weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)\n",
|
| 179 |
+
" grad_input = grad_output @ weights_deq\n",
|
| 180 |
+
" grad_bias = grad_output.flatten(0, -2).sum(dim=0) if ctx._has_bias else None\n",
|
| 181 |
+
" return grad_input, None, None, None, grad_bias\n",
|
| 182 |
+
"\n",
|
| 183 |
+
"\n",
|
| 184 |
+
"class FrozenBNBLinear(nn.Module):\n",
|
| 185 |
+
" def __init__(self, weight, absmax, code, bias=None):\n",
|
| 186 |
+
" assert isinstance(bias, nn.Parameter) or bias is None\n",
|
| 187 |
+
" super().__init__()\n",
|
| 188 |
+
" self.out_features, self.in_features = weight.shape\n",
|
| 189 |
+
" self.register_buffer(\"weight\", weight.requires_grad_(False))\n",
|
| 190 |
+
" self.register_buffer(\"absmax\", absmax.requires_grad_(False))\n",
|
| 191 |
+
" self.register_buffer(\"code\", code.requires_grad_(False))\n",
|
| 192 |
+
" self.bias = bias\n",
|
| 193 |
+
" \n",
|
| 194 |
+
" def forward(self, input):\n",
|
| 195 |
+
" return DequantizeAndLinear.apply(input, self.weight, self.absmax, self.code, self.bias)\n",
|
| 196 |
+
" \n",
|
| 197 |
+
" @classmethod\n",
|
| 198 |
+
" def from_linear(cls, linear: nn.Linear) -> \"FrozenBNBLinear\":\n",
|
| 199 |
+
" weights_int8, state = quantize_blockise_lowmemory(linear.weight)\n",
|
| 200 |
+
" return cls(weights_int8, *state, linear.bias)\n",
|
| 201 |
+
" \n",
|
| 202 |
+
" def __repr__(self):\n",
|
| 203 |
+
" return f\"{self.__class__.__name__}({self.in_features}, {self.out_features})\"\n",
|
| 204 |
+
" \n",
|
| 205 |
+
" \n",
|
| 206 |
+
"class FrozenBNBEmbedding(nn.Module):\n",
|
| 207 |
+
" def __init__(self, weight, absmax, code):\n",
|
| 208 |
+
" super().__init__()\n",
|
| 209 |
+
" self.num_embeddings, self.embedding_dim = weight.shape\n",
|
| 210 |
+
" self.register_buffer(\"weight\", weight.requires_grad_(False))\n",
|
| 211 |
+
" self.register_buffer(\"absmax\", absmax.requires_grad_(False))\n",
|
| 212 |
+
" self.register_buffer(\"code\", code.requires_grad_(False))\n",
|
| 213 |
+
" \n",
|
| 214 |
+
" def forward(self, x, **kwargs):\n",
|
| 215 |
+
" with torch.no_grad():\n",
|
| 216 |
+
" # note: both quantuized weights and input indices are *not* differentiable\n",
|
| 217 |
+
" weight_deq = dequantize_blockwise(self.weight, absmax=self.absmax, code=self.code)\n",
|
| 218 |
+
" return F.embedding(x, weight_deq, **kwargs)\n",
|
| 219 |
+
" \n",
|
| 220 |
+
" @classmethod\n",
|
| 221 |
+
" def from_embedding(cls, embedding: nn.Embedding) -> \"FrozenBNBEmbedding\":\n",
|
| 222 |
+
" weights_int8, state = quantize_blockise_lowmemory(embedding.weight)\n",
|
| 223 |
+
" return cls(weights_int8, *state)\n",
|
| 224 |
+
" \n",
|
| 225 |
+
" def __repr__(self):\n",
|
| 226 |
+
" return f\"{self.__class__.__name__}({self.num_embeddings}, {self.embedding_dim})\"\n",
|
| 227 |
+
" \n",
|
| 228 |
+
" \n",
|
| 229 |
+
"def quantize_blockise_lowmemory(matrix: torch.Tensor, chunk_size: int = 2 ** 20):\n",
|
| 230 |
+
" assert chunk_size % 4096 == 0\n",
|
| 231 |
+
" code = None\n",
|
| 232 |
+
" chunks = []\n",
|
| 233 |
+
" absmaxes = []\n",
|
| 234 |
+
" flat_tensor = matrix.view(-1)\n",
|
| 235 |
+
" for i in range((matrix.numel() - 1) // chunk_size + 1):\n",
|
| 236 |
+
" input_chunk = flat_tensor[i * chunk_size: (i + 1) * chunk_size].clone()\n",
|
| 237 |
+
" quantized_chunk, (absmax_chunk, code) = quantize_blockwise(input_chunk, code=code)\n",
|
| 238 |
+
" chunks.append(quantized_chunk)\n",
|
| 239 |
+
" absmaxes.append(absmax_chunk)\n",
|
| 240 |
+
" \n",
|
| 241 |
+
" matrix_i8 = torch.cat(chunks).reshape_as(matrix)\n",
|
| 242 |
+
" absmax = torch.cat(absmaxes)\n",
|
| 243 |
+
" return matrix_i8, (absmax, code)\n",
|
| 244 |
+
"\n",
|
| 245 |
+
"\n",
|
| 246 |
+
"def dummify(model, adapter_dim: int = 0):\n",
|
| 247 |
+
" for module in list(model.modules()):\n",
|
| 248 |
+
" for name, child in module.named_children():\n",
|
| 249 |
+
" if isinstance(child, nn.Linear):\n",
|
| 250 |
+
" print(name, child)\n",
|
| 251 |
+
" setattr(\n",
|
| 252 |
+
" module,\n",
|
| 253 |
+
" name,\n",
|
| 254 |
+
" FrozenBNBLinear(\n",
|
| 255 |
+
" weight=torch.zeros(child.out_features, child.in_features, dtype=torch.uint8),\n",
|
| 256 |
+
" absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1),\n",
|
| 257 |
+
" code=torch.zeros(256),\n",
|
| 258 |
+
" bias=child.bias,\n",
|
| 259 |
+
" ),\n",
|
| 260 |
+
" )\n",
|
| 261 |
+
" elif isinstance(child, nn.Embedding):\n",
|
| 262 |
+
" setattr(\n",
|
| 263 |
+
" module,\n",
|
| 264 |
+
" name,\n",
|
| 265 |
+
" FrozenBNBEmbedding(\n",
|
| 266 |
+
" weight=torch.zeros(child.num_embeddings, child.embedding_dim, dtype=torch.uint8),\n",
|
| 267 |
+
" absmax=torch.zeros((child.weight.numel() - 1) // 4096 + 1),\n",
|
| 268 |
+
" code=torch.zeros(256),\n",
|
| 269 |
+
" )\n",
|
| 270 |
+
" ),\n",
|
| 271 |
+
"\n",
|
| 272 |
+
"\n",
|
| 273 |
+
"def bnbfy_(model, adapter_dim: int = 0):\n",
|
| 274 |
+
" for module in list(model.modules()):\n",
|
| 275 |
+
" for name, child in module.named_children():\n",
|
| 276 |
+
" if isinstance(child, nn.Linear):\n",
|
| 277 |
+
" print(name, child)\n",
|
| 278 |
+
" setattr(module, name, FrozenBNBLinear.from_linear(child))\n",
|
| 279 |
+
" \n",
|
| 280 |
+
" elif isinstance(child, nn.Embedding):\n",
|
| 281 |
+
" print(name, child)\n",
|
| 282 |
+
" setattr(module, name, FrozenBNBEmbedding.from_embedding(child))"
|
| 283 |
+
]
|
| 284 |
+
},
|
| 285 |
+
{
|
| 286 |
+
"cell_type": "code",
|
| 287 |
+
"execution_count": 66,
|
| 288 |
+
"metadata": {},
|
| 289 |
+
"outputs": [],
|
| 290 |
+
"source": [
|
| 291 |
+
"class GPTJBlock(transformers.models.gptj.modeling_gptj.GPTJBlock):\n",
|
| 292 |
+
" def __init__(self, config):\n",
|
| 293 |
+
" print(\"MONKEYPATCH BLOCK\")\n",
|
| 294 |
+
" super().__init__(config)\n",
|
| 295 |
+
"\n",
|
| 296 |
+
" dummify(self.attn)\n",
|
| 297 |
+
" dummify(self.mlp)\n",
|
| 298 |
+
"\n",
|
| 299 |
+
"transformers.models.gptj.modeling_gptj.GPTJBlock = GPTJBlock\n",
|
| 300 |
+
"\n",
|
| 301 |
+
"\n",
|
| 302 |
+
"class GPTJModel(transformers.models.gptj.modeling_gptj.GPTJModel):\n",
|
| 303 |
+
" def __init__(self, config):\n",
|
| 304 |
+
" super().__init__(config)\n",
|
| 305 |
+
" dummify(self)\n",
|
| 306 |
+
"class GPTJForCausalLM(transformers.models.gptj.modeling_gptj.GPTJForCausalLM):\n",
|
| 307 |
+
" def __init__(self, config):\n",
|
| 308 |
+
" super().__init__(config)\n",
|
| 309 |
+
" dummify(self)\n"
|
| 310 |
+
]
|
| 311 |
+
},
|
| 312 |
+
{
|
| 313 |
+
"cell_type": "code",
|
| 314 |
+
"execution_count": 67,
|
| 315 |
+
"metadata": {},
|
| 316 |
+
"outputs": [
|
| 317 |
+
{
|
| 318 |
+
"data": {
|
| 319 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 320 |
+
"model_id": "1c98b9ebbf8d44d8b0bc422d4bfce21f",
|
| 321 |
+
"version_major": 2,
|
| 322 |
+
"version_minor": 0
|
| 323 |
+
},
|
| 324 |
+
"text/plain": [
|
| 325 |
+
"Downloading: 0%| | 0.00/0.98k [00:00<?, ?B/s]"
|
| 326 |
+
]
|
| 327 |
+
},
|
| 328 |
+
"metadata": {},
|
| 329 |
+
"output_type": "display_data"
|
| 330 |
+
},
|
| 331 |
+
{
|
| 332 |
+
"data": {
|
| 333 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 334 |
+
"model_id": "04bc6b612ff146308ec0b63fc15640f8",
|
| 335 |
+
"version_major": 2,
|
| 336 |
+
"version_minor": 0
|
| 337 |
+
},
|
| 338 |
+
"text/plain": [
|
| 339 |
+
"Downloading: 0%| | 0.00/5.75G [00:00<?, ?B/s]"
|
| 340 |
+
]
|
| 341 |
+
},
|
| 342 |
+
"metadata": {},
|
| 343 |
+
"output_type": "display_data"
|
| 344 |
+
},
|
| 345 |
+
{
|
| 346 |
+
"name": "stdout",
|
| 347 |
+
"output_type": "stream",
|
| 348 |
+
"text": [
|
| 349 |
+
"MONKEYPATCH BLOCK\n",
|
| 350 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 351 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 352 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 353 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 354 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 355 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 356 |
+
"MONKEYPATCH BLOCK\n",
|
| 357 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 358 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 359 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 360 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 361 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 362 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 363 |
+
"MONKEYPATCH BLOCK\n",
|
| 364 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 365 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 366 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 367 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 368 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 369 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 370 |
+
"MONKEYPATCH BLOCK\n",
|
| 371 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 372 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 373 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 374 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 375 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 376 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 377 |
+
"MONKEYPATCH BLOCK\n",
|
| 378 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 379 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 380 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 381 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 382 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 383 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 384 |
+
"MONKEYPATCH BLOCK\n",
|
| 385 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 386 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 387 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 388 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 389 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 390 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 391 |
+
"MONKEYPATCH BLOCK\n",
|
| 392 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 393 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 394 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 395 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 396 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 397 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 398 |
+
"MONKEYPATCH BLOCK\n",
|
| 399 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 400 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 401 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 402 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 403 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 404 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 405 |
+
"MONKEYPATCH BLOCK\n",
|
| 406 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 407 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 408 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 409 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 410 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 411 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 412 |
+
"MONKEYPATCH BLOCK\n",
|
| 413 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 414 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 415 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 416 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 417 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 418 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 419 |
+
"MONKEYPATCH BLOCK\n",
|
| 420 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 421 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 422 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 423 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 424 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 425 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 426 |
+
"MONKEYPATCH BLOCK\n",
|
| 427 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 428 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 429 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 430 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 431 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 432 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 433 |
+
"MONKEYPATCH BLOCK\n",
|
| 434 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 435 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 436 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 437 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 438 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 439 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 440 |
+
"MONKEYPATCH BLOCK\n",
|
| 441 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 442 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 443 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 444 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 445 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 446 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 447 |
+
"MONKEYPATCH BLOCK\n",
|
| 448 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 449 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 450 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 451 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 452 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 453 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 454 |
+
"MONKEYPATCH BLOCK\n",
|
| 455 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 456 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 457 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 458 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 459 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 460 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 461 |
+
"MONKEYPATCH BLOCK\n",
|
| 462 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 463 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 464 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 465 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 466 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 467 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 468 |
+
"MONKEYPATCH BLOCK\n",
|
| 469 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 470 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 471 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 472 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 473 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 474 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 475 |
+
"MONKEYPATCH BLOCK\n",
|
| 476 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 477 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 478 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 479 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 480 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 481 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 482 |
+
"MONKEYPATCH BLOCK\n",
|
| 483 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 484 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 485 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 486 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 487 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 488 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 489 |
+
"MONKEYPATCH BLOCK\n",
|
| 490 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 491 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 492 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 493 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 494 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 495 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 496 |
+
"MONKEYPATCH BLOCK\n"
|
| 497 |
+
]
|
| 498 |
+
},
|
| 499 |
+
{
|
| 500 |
+
"name": "stdout",
|
| 501 |
+
"output_type": "stream",
|
| 502 |
+
"text": [
|
| 503 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 504 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 505 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 506 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 507 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 508 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 509 |
+
"MONKEYPATCH BLOCK\n",
|
| 510 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 511 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 512 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 513 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 514 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 515 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 516 |
+
"MONKEYPATCH BLOCK\n",
|
| 517 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 518 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 519 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 520 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 521 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 522 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 523 |
+
"MONKEYPATCH BLOCK\n",
|
| 524 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 525 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 526 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 527 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 528 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 529 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 530 |
+
"MONKEYPATCH BLOCK\n",
|
| 531 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 532 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 533 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 534 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 535 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 536 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 537 |
+
"MONKEYPATCH BLOCK\n",
|
| 538 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 539 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 540 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 541 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 542 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 543 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 544 |
+
"MONKEYPATCH BLOCK\n",
|
| 545 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 546 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 547 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 548 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 549 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 550 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 551 |
+
"lm_head Linear(in_features=4096, out_features=50400, bias=True)\n"
|
| 552 |
+
]
|
| 553 |
+
}
|
| 554 |
+
],
|
| 555 |
+
"source": [
|
| 556 |
+
"config = transformers.GPTJConfig.from_pretrained(\"EleutherAI/gpt-j-6B\")\n",
|
| 557 |
+
"tokenizer = transformers.AutoTokenizer.from_pretrained(\"EleutherAI/gpt-j-6B\")\n",
|
| 558 |
+
"gpt = GPTJForCausalLM.from_pretrained(\"hivemind/gpt-j-6B-8bit\", low_cpu_mem_usage=True)"
|
| 559 |
+
]
|
| 560 |
+
},
|
| 561 |
+
{
|
| 562 |
+
"cell_type": "code",
|
| 563 |
+
"execution_count": 68,
|
| 564 |
+
"metadata": {},
|
| 565 |
+
"outputs": [],
|
| 566 |
+
"source": [
|
| 567 |
+
"device = 'cuda' if torch.cuda.is_available else 'cpu'\n",
|
| 568 |
+
"gpt.to(device).train(False);"
|
| 569 |
+
]
|
| 570 |
+
},
|
| 571 |
+
{
|
| 572 |
+
"cell_type": "code",
|
| 573 |
+
"execution_count": 69,
|
| 574 |
+
"metadata": {},
|
| 575 |
+
"outputs": [
|
| 576 |
+
{
|
| 577 |
+
"name": "stderr",
|
| 578 |
+
"output_type": "stream",
|
| 579 |
+
"text": [
|
| 580 |
+
"Reusing dataset wikitext (/home/jheuristic/.cache/huggingface/datasets/wikitext/wikitext-2-v1/1.0.0/a241db52902eaf2c6aa732210bead40c090019a499ceb13bcbfa3f8ab646a126)\n"
|
| 581 |
+
]
|
| 582 |
+
},
|
| 583 |
+
{
|
| 584 |
+
"data": {
|
| 585 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 586 |
+
"model_id": "bfbf0e20ed194d679d2f877085f679cb",
|
| 587 |
+
"version_major": 2,
|
| 588 |
+
"version_minor": 0
|
| 589 |
+
},
|
| 590 |
+
"text/plain": [
|
| 591 |
+
" 0%| | 0/3 [00:00<?, ?it/s]"
|
| 592 |
+
]
|
| 593 |
+
},
|
| 594 |
+
"metadata": {},
|
| 595 |
+
"output_type": "display_data"
|
| 596 |
+
}
|
| 597 |
+
],
|
| 598 |
+
"source": [
|
| 599 |
+
"from datasets import load_dataset\n",
|
| 600 |
+
"data = load_dataset('wikitext', 'wikitext-2-v1')['test']"
|
| 601 |
+
]
|
| 602 |
+
},
|
| 603 |
+
{
|
| 604 |
+
"cell_type": "code",
|
| 605 |
+
"execution_count": 70,
|
| 606 |
+
"metadata": {},
|
| 607 |
+
"outputs": [
|
| 608 |
+
{
|
| 609 |
+
"data": {
|
| 610 |
+
"application/vnd.jupyter.widget-view+json": {
|
| 611 |
+
"model_id": "53d7e76934de4a1498306d49e4f41ad2",
|
| 612 |
+
"version_major": 2,
|
| 613 |
+
"version_minor": 0
|
| 614 |
+
},
|
| 615 |
+
"text/plain": [
|
| 616 |
+
" 0%| | 0/4358 [00:00<?, ?it/s]"
|
| 617 |
+
]
|
| 618 |
+
},
|
| 619 |
+
"metadata": {},
|
| 620 |
+
"output_type": "display_data"
|
| 621 |
+
}
|
| 622 |
+
],
|
| 623 |
+
"source": [
|
| 624 |
+
"\n",
|
| 625 |
+
"numerator, denominator = 0, 0\n",
|
| 626 |
+
"collator = transformers.DataCollatorForLanguageModeling(tokenizer, mlm=False)\n",
|
| 627 |
+
"loader = torch.utils.data.DataLoader(data, batch_size=1, num_workers=0, shuffle=False)\n",
|
| 628 |
+
"\n",
|
| 629 |
+
"\n",
|
| 630 |
+
"with torch.no_grad(), torch.cuda.amp.autocast(), tqdm(loader) as progressbar:\n",
|
| 631 |
+
" for i, row in enumerate(progressbar):\n",
|
| 632 |
+
" if max(map(len, row['text'])) <= 1:\n",
|
| 633 |
+
" continue\n",
|
| 634 |
+
" batch = tokenizer(**row, truncation=False, return_tensors='pt')\n",
|
| 635 |
+
" batch = {k: v.cuda() for k, v in batch.items()}\n",
|
| 636 |
+
"\n",
|
| 637 |
+
" out = gpt.forward(**batch,)\n",
|
| 638 |
+
"\n",
|
| 639 |
+
" loss = F.cross_entropy(out.logits[:, :-1, :].flatten(0, -2), batch['input_ids'][:, 1:].flatten(),\n",
|
| 640 |
+
" reduction='none')\n",
|
| 641 |
+
"\n",
|
| 642 |
+
" numerator += loss.sum().item()\n",
|
| 643 |
+
" denominator += len(loss)\n",
|
| 644 |
+
" progressbar.desc = f\"{numerator/denominator:.3f}\""
|
| 645 |
+
]
|
| 646 |
+
},
|
| 647 |
+
{
|
| 648 |
+
"cell_type": "code",
|
| 649 |
+
"execution_count": 71,
|
| 650 |
+
"metadata": {},
|
| 651 |
+
"outputs": [
|
| 652 |
+
{
|
| 653 |
+
"data": {
|
| 654 |
+
"text/plain": [
|
| 655 |
+
"18.427138288946292"
|
| 656 |
+
]
|
| 657 |
+
},
|
| 658 |
+
"execution_count": 71,
|
| 659 |
+
"metadata": {},
|
| 660 |
+
"output_type": "execute_result"
|
| 661 |
+
}
|
| 662 |
+
],
|
| 663 |
+
"source": [
|
| 664 |
+
"# test perplexity\n",
|
| 665 |
+
"import math\n",
|
| 666 |
+
"math.exp(numerator/denominator)"
|
| 667 |
+
]
|
| 668 |
+
}
|
| 669 |
+
],
|
| 670 |
+
"metadata": {
|
| 671 |
+
"kernelspec": {
|
| 672 |
+
"display_name": "py38",
|
| 673 |
+
"language": "python",
|
| 674 |
+
"name": "py38"
|
| 675 |
+
},
|
| 676 |
+
"language_info": {
|
| 677 |
+
"codemirror_mode": {
|
| 678 |
+
"name": "ipython",
|
| 679 |
+
"version": 3
|
| 680 |
+
},
|
| 681 |
+
"file_extension": ".py",
|
| 682 |
+
"mimetype": "text/x-python",
|
| 683 |
+
"name": "python",
|
| 684 |
+
"nbconvert_exporter": "python",
|
| 685 |
+
"pygments_lexer": "ipython3",
|
| 686 |
+
"version": "3.8.1"
|
| 687 |
+
}
|
| 688 |
+
},
|
| 689 |
+
"nbformat": 4,
|
| 690 |
+
"nbformat_minor": 2
|
| 691 |
+
}
|