Upload convert-gpt-j.ipynb
Browse files- convert-gpt-j.ipynb +406 -0
convert-gpt-j.ipynb
ADDED
|
@@ -0,0 +1,406 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cells": [
|
| 3 |
+
{
|
| 4 |
+
"cell_type": "code",
|
| 5 |
+
"execution_count": 1,
|
| 6 |
+
"metadata": {},
|
| 7 |
+
"outputs": [],
|
| 8 |
+
"source": [
|
| 9 |
+
"import torch\n",
|
| 10 |
+
"import torch.nn as nn\n",
|
| 11 |
+
"import torch.nn.functional as F\n",
|
| 12 |
+
"\n",
|
| 13 |
+
"from bitsandbytes.functional import quantize_blockwise, dequantize_blockwise\n",
|
| 14 |
+
"import transformers\n",
|
| 15 |
+
"%config Completer.use_jedi = False\n",
|
| 16 |
+
"\n",
|
| 17 |
+
"\n",
|
| 18 |
+
"model_name = \"EleutherAI/gpt-j-6B\"\n",
|
| 19 |
+
"gpt = transformers.AutoModelForCausalLM.from_pretrained(model_name)\n",
|
| 20 |
+
"tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)"
|
| 21 |
+
]
|
| 22 |
+
},
|
| 23 |
+
{
|
| 24 |
+
"cell_type": "code",
|
| 25 |
+
"execution_count": 2,
|
| 26 |
+
"metadata": {},
|
| 27 |
+
"outputs": [],
|
| 28 |
+
"source": [
|
| 29 |
+
"def quantize_blockise_lowmemory(matrix: torch.Tensor, chunk_size: int = 2 ** 20):\n",
|
| 30 |
+
" assert chunk_size % 4096 == 0\n",
|
| 31 |
+
" code = None\n",
|
| 32 |
+
" chunks = []\n",
|
| 33 |
+
" absmaxes = []\n",
|
| 34 |
+
" flat_tensor = matrix.view(-1)\n",
|
| 35 |
+
" for i in range((matrix.numel() - 1) // chunk_size + 1):\n",
|
| 36 |
+
" input_chunk = flat_tensor[i * chunk_size: (i + 1) * chunk_size].clone()\n",
|
| 37 |
+
" quantized_chunk, (absmax_chunk, code) = quantize_blockwise(input_chunk, code=code)\n",
|
| 38 |
+
" chunks.append(quantized_chunk)\n",
|
| 39 |
+
" absmaxes.append(absmax_chunk)\n",
|
| 40 |
+
" \n",
|
| 41 |
+
" matrix_i8 = torch.cat(chunks).reshape_as(matrix)\n",
|
| 42 |
+
" absmax = torch.cat(absmaxes)\n",
|
| 43 |
+
" return matrix_i8, (absmax, code)"
|
| 44 |
+
]
|
| 45 |
+
},
|
| 46 |
+
{
|
| 47 |
+
"cell_type": "code",
|
| 48 |
+
"execution_count": 3,
|
| 49 |
+
"metadata": {},
|
| 50 |
+
"outputs": [],
|
| 51 |
+
"source": [
|
| 52 |
+
"from typing import Tuple\n",
|
| 53 |
+
"from torch.cuda.amp import custom_fwd, custom_bwd\n",
|
| 54 |
+
"\n",
|
| 55 |
+
"\n",
|
| 56 |
+
"class DequantizeAndLinear(torch.autograd.Function):\n",
|
| 57 |
+
" \n",
|
| 58 |
+
" @staticmethod\n",
|
| 59 |
+
" @custom_fwd\n",
|
| 60 |
+
" def forward(ctx, input: torch.Tensor, weights_quantized: torch.ByteTensor,\n",
|
| 61 |
+
" absmax: torch.FloatTensor, code: torch.FloatTensor, bias: torch.FloatTensor):\n",
|
| 62 |
+
" \n",
|
| 63 |
+
" weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)\n",
|
| 64 |
+
" ctx.save_for_backward(input, weights_quantized, absmax, code)\n",
|
| 65 |
+
" ctx._has_bias = bias is not None\n",
|
| 66 |
+
" return F.linear(input, weights_deq, bias)\n",
|
| 67 |
+
" \n",
|
| 68 |
+
" @staticmethod\n",
|
| 69 |
+
" @custom_bwd\n",
|
| 70 |
+
" def backward(ctx, grad_output: torch.Tensor):\n",
|
| 71 |
+
" assert not ctx.needs_input_grad[1] and not ctx.needs_input_grad[2] and not ctx.needs_input_grad[3]\n",
|
| 72 |
+
" input, weights_quantized, absmax, code = ctx.saved_tensors\n",
|
| 73 |
+
" # grad_output: [*batch, out_features]\n",
|
| 74 |
+
" weights_deq = dequantize_blockwise(weights_quantized, absmax=absmax, code=code)\n",
|
| 75 |
+
" grad_input = grad_output @ weights_deq\n",
|
| 76 |
+
" grad_bias = grad_output.flatten(0, -2).sum(dim=0) if ctx._has_bias else None\n",
|
| 77 |
+
" return grad_input, None, None, None, grad_bias\n",
|
| 78 |
+
"\n",
|
| 79 |
+
"\n",
|
| 80 |
+
"class BNBLinearWithAdapter(nn.Module):\n",
|
| 81 |
+
" def __init__(self, weight, absmax, code, bias=None, adapter_dim=0):\n",
|
| 82 |
+
" assert isinstance(bias, nn.Parameter) or bias is None\n",
|
| 83 |
+
" super().__init__()\n",
|
| 84 |
+
" self.out_features, self.in_features = weight.shape\n",
|
| 85 |
+
" self.register_buffer(\"weight\", weight.requires_grad_(False))\n",
|
| 86 |
+
" self.register_buffer(\"absmax\", absmax.requires_grad_(False))\n",
|
| 87 |
+
" self.register_buffer(\"code\", code.requires_grad_(False))\n",
|
| 88 |
+
" self.bias = bias\n",
|
| 89 |
+
" \n",
|
| 90 |
+
" if adapter_dim > 0:\n",
|
| 91 |
+
" self.adapter = nn.Sequential(\n",
|
| 92 |
+
" nn.Linear(self.in_features, adapter_dim, bias=False),\n",
|
| 93 |
+
" nn.Linear(adapter_dim, self.out_features, bias=False),\n",
|
| 94 |
+
" )\n",
|
| 95 |
+
" \n",
|
| 96 |
+
" nn.init.zeros_(self.adapter[1].weight)\n",
|
| 97 |
+
" else:\n",
|
| 98 |
+
" self.adapter = None\n",
|
| 99 |
+
" \n",
|
| 100 |
+
" def forward(self, input):\n",
|
| 101 |
+
" out = DequantizeAndLinear.apply(input, self.weight, self.absmax, self.code, self.bias)\n",
|
| 102 |
+
" \n",
|
| 103 |
+
" if self.adapter:\n",
|
| 104 |
+
" return self.adapter(input) + out\n",
|
| 105 |
+
" \n",
|
| 106 |
+
" return out\n",
|
| 107 |
+
" \n",
|
| 108 |
+
" \n",
|
| 109 |
+
" @classmethod\n",
|
| 110 |
+
" def from_linear(cls, linear: nn.Linear, **kwargs) -> \"FrozenBNBLinear\":\n",
|
| 111 |
+
" weights_int8, state = quantize_blockise_lowmemory(linear.weight)\n",
|
| 112 |
+
" return cls(weights_int8, *state, linear.bias, **kwargs)\n",
|
| 113 |
+
" \n",
|
| 114 |
+
" def __repr__(self):\n",
|
| 115 |
+
" return f\"{self.__class__.__name__}({self.in_features}, {self.out_features})\"\n",
|
| 116 |
+
"\n",
|
| 117 |
+
"\n",
|
| 118 |
+
"class BNBEmbeddingWithAdapter(nn.Module):\n",
|
| 119 |
+
" def __init__(self, weight, absmax, code, adapter_dim=0):\n",
|
| 120 |
+
" super().__init__()\n",
|
| 121 |
+
" self.num_embeddings, self.embedding_dim = weight.shape\n",
|
| 122 |
+
" self.register_buffer(\"weight\", weight.requires_grad_(False))\n",
|
| 123 |
+
" self.register_buffer(\"absmax\", absmax.requires_grad_(False))\n",
|
| 124 |
+
" self.register_buffer(\"code\", code.requires_grad_(False))\n",
|
| 125 |
+
" \n",
|
| 126 |
+
" if adapter_dim > 0:\n",
|
| 127 |
+
" self.adapter = nn.Sequential(\n",
|
| 128 |
+
" nn.Embedding(self.num_embeddings, adapter_dim),\n",
|
| 129 |
+
" nn.Linear(adapter_dim, self.embedding_dim, bias=False),\n",
|
| 130 |
+
" )\n",
|
| 131 |
+
" \n",
|
| 132 |
+
" nn.init.zeros_(self.adapter[1].weight)\n",
|
| 133 |
+
" else:\n",
|
| 134 |
+
" self.adapter = None\n",
|
| 135 |
+
" \n",
|
| 136 |
+
" def forward(self, input, **kwargs):\n",
|
| 137 |
+
" with torch.no_grad():\n",
|
| 138 |
+
" # note: both quantuized weights and input indices are *not* differentiable\n",
|
| 139 |
+
" weight_deq = dequantize_blockwise(self.weight, absmax=self.absmax, code=self.code)\n",
|
| 140 |
+
" out = F.embedding(input, weight_deq, **kwargs)\n",
|
| 141 |
+
" if self.adapter:\n",
|
| 142 |
+
" return out + self.adapter(input, **kwargs)\n",
|
| 143 |
+
" \n",
|
| 144 |
+
" return out\n",
|
| 145 |
+
" \n",
|
| 146 |
+
" @classmethod\n",
|
| 147 |
+
" def from_embedding(cls, embedding: nn.Embedding, **kwargs) -> \"FrozenBNBEmbedding\":\n",
|
| 148 |
+
" weights_int8, state = quantize_blockise_lowmemory(embedding.weight)\n",
|
| 149 |
+
" return cls(weights_int8, *state, **kwargs)\n",
|
| 150 |
+
" \n",
|
| 151 |
+
" def __repr__(self):\n",
|
| 152 |
+
" return f\"{self.__class__.__name__}({self.num_embeddings}, {self.embedding_dim})\""
|
| 153 |
+
]
|
| 154 |
+
},
|
| 155 |
+
{
|
| 156 |
+
"cell_type": "code",
|
| 157 |
+
"execution_count": 4,
|
| 158 |
+
"metadata": {},
|
| 159 |
+
"outputs": [],
|
| 160 |
+
"source": [
|
| 161 |
+
"def bnbfy_(model, adapter_dim: int = 0):\n",
|
| 162 |
+
" for module in list(model.modules()):\n",
|
| 163 |
+
" for name, child in module.named_children():\n",
|
| 164 |
+
" if isinstance(child, nn.Linear):\n",
|
| 165 |
+
" print(name, child)\n",
|
| 166 |
+
" setattr(module, name, BNBLinearWithAdapter.from_linear(child, adapter_dim=adapter_dim))\n",
|
| 167 |
+
" \n",
|
| 168 |
+
" elif isinstance(child, nn.Embedding):\n",
|
| 169 |
+
" print(name, child)\n",
|
| 170 |
+
" setattr(module, name, BNBEmbeddingWithAdapter.from_embedding(child, adapter_dim=adapter_dim))"
|
| 171 |
+
]
|
| 172 |
+
},
|
| 173 |
+
{
|
| 174 |
+
"cell_type": "code",
|
| 175 |
+
"execution_count": 5,
|
| 176 |
+
"metadata": {},
|
| 177 |
+
"outputs": [
|
| 178 |
+
{
|
| 179 |
+
"name": "stdout",
|
| 180 |
+
"output_type": "stream",
|
| 181 |
+
"text": [
|
| 182 |
+
"lm_head Linear(in_features=4096, out_features=50400, bias=True)\n",
|
| 183 |
+
"wte Embedding(50400, 4096)\n",
|
| 184 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 185 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 186 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 187 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 188 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 189 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 190 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 191 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 192 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 193 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 194 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 195 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 196 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 197 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 198 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 199 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 200 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 201 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 202 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 203 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 204 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 205 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 206 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 207 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 208 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 209 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 210 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 211 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 212 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 213 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 214 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 215 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 216 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 217 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 218 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 219 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 220 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 221 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 222 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 223 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 224 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 225 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 226 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 227 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 228 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 229 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 230 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 231 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 232 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 233 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 234 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 235 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 236 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 237 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 238 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 239 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 240 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 241 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 242 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 243 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 244 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 245 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 246 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 247 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 248 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 249 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 250 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 251 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 252 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 253 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 254 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 255 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 256 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 257 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 258 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 259 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 260 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 261 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 262 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 263 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 264 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 265 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 266 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 267 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 268 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 269 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 270 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 271 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 272 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 273 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 274 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 275 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 276 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 277 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 278 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 279 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 280 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 281 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 282 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 283 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 284 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 285 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 286 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 287 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 288 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 289 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 290 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 291 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 292 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 293 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 294 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 295 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 296 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 297 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 298 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 299 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 300 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 301 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 302 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 303 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 304 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 305 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 306 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 307 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 308 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 309 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 310 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 311 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 312 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n"
|
| 313 |
+
]
|
| 314 |
+
},
|
| 315 |
+
{
|
| 316 |
+
"name": "stdout",
|
| 317 |
+
"output_type": "stream",
|
| 318 |
+
"text": [
|
| 319 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 320 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 321 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 322 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 323 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 324 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 325 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 326 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 327 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 328 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 329 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 330 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 331 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 332 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 333 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 334 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 335 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 336 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 337 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 338 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 339 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 340 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 341 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 342 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 343 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 344 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 345 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 346 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 347 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 348 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 349 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 350 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 351 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n",
|
| 352 |
+
"k_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 353 |
+
"v_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 354 |
+
"q_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 355 |
+
"out_proj Linear(in_features=4096, out_features=4096, bias=False)\n",
|
| 356 |
+
"fc_in Linear(in_features=4096, out_features=16384, bias=True)\n",
|
| 357 |
+
"fc_out Linear(in_features=16384, out_features=4096, bias=True)\n"
|
| 358 |
+
]
|
| 359 |
+
}
|
| 360 |
+
],
|
| 361 |
+
"source": [
|
| 362 |
+
"bnbfy_(gpt, adapter_dim=0)"
|
| 363 |
+
]
|
| 364 |
+
},
|
| 365 |
+
{
|
| 366 |
+
"cell_type": "code",
|
| 367 |
+
"execution_count": 7,
|
| 368 |
+
"metadata": {},
|
| 369 |
+
"outputs": [
|
| 370 |
+
{
|
| 371 |
+
"name": "stderr",
|
| 372 |
+
"output_type": "stream",
|
| 373 |
+
"text": [
|
| 374 |
+
"Setting `pad_token_id` to `eos_token_id`:50256 for open-end generation.\n"
|
| 375 |
+
]
|
| 376 |
+
}
|
| 377 |
+
],
|
| 378 |
+
"source": [
|
| 379 |
+
"prompt = tokenizer(\"A cat sat on a mat and\", return_tensors='pt')\n",
|
| 380 |
+
"out = gpt.generate(**prompt, min_length=8, max_length=8, do_sample=True)\n",
|
| 381 |
+
"tokenizer.decode(out[0])"
|
| 382 |
+
]
|
| 383 |
+
}
|
| 384 |
+
],
|
| 385 |
+
"metadata": {
|
| 386 |
+
"kernelspec": {
|
| 387 |
+
"display_name": "py38",
|
| 388 |
+
"language": "python",
|
| 389 |
+
"name": "py38"
|
| 390 |
+
},
|
| 391 |
+
"language_info": {
|
| 392 |
+
"codemirror_mode": {
|
| 393 |
+
"name": "ipython",
|
| 394 |
+
"version": 3
|
| 395 |
+
},
|
| 396 |
+
"file_extension": ".py",
|
| 397 |
+
"mimetype": "text/x-python",
|
| 398 |
+
"name": "python",
|
| 399 |
+
"nbconvert_exporter": "python",
|
| 400 |
+
"pygments_lexer": "ipython3",
|
| 401 |
+
"version": "3.8.1"
|
| 402 |
+
}
|
| 403 |
+
},
|
| 404 |
+
"nbformat": 4,
|
| 405 |
+
"nbformat_minor": 2
|
| 406 |
+
}
|