Upload 13 files
Browse files- .gitattributes +0 -34
- LICENSE +3 -0
- README.md +32 -3
- cli.py +11 -0
- configs/train_config.json +1 -0
- data_examples/example_code.py +4 -0
- data_examples/example_expected.md +2 -0
- data_examples/sample_dataset.jsonl +2 -0
- inference.py +13 -0
- requirements.txt +4 -0
- tests/test_inference.py +1 -0
- train_codet5_docgen.py +32 -0
- utils.py +3 -0
.gitattributes
CHANGED
|
@@ -1,35 +1 @@
|
|
| 1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
-
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
| 1 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LICENSE
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Apache License 2.0
|
| 2 |
+
|
| 3 |
+
Copyright 2025 hmnshudhmn24
|
README.md
CHANGED
|
@@ -1,3 +1,32 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# AutoDocGen 🧠 — AI Code Documentation & Test Generator
|
| 2 |
+
|
| 3 |
+
AutoDocGen is an advanced model built on **CodeT5** that automatically generates
|
| 4 |
+
documentation, comments, and unit tests for source code files.
|
| 5 |
+
|
| 6 |
+
---
|
| 7 |
+
### 🚀 Features
|
| 8 |
+
- Auto-generate docstrings for Python functions
|
| 9 |
+
- Create unit tests from given functions
|
| 10 |
+
- Trainable and extendable on custom datasets
|
| 11 |
+
|
| 12 |
+
---
|
| 13 |
+
### 📦 Files
|
| 14 |
+
- `train_codet5_docgen.py` — training script
|
| 15 |
+
- `inference.py` — run doc generation on your code
|
| 16 |
+
- `cli.py` — command-line interface
|
| 17 |
+
- `configs/train_config.json` — training parameters
|
| 18 |
+
- `data_examples/` — contains example dataset and code
|
| 19 |
+
- `tests/` — unit test folder
|
| 20 |
+
|
| 21 |
+
---
|
| 22 |
+
### 🧠 Model Description
|
| 23 |
+
This model fine-tunes **CodeT5-small** from Hugging Face Transformers
|
| 24 |
+
on a dataset of Python code and natural language descriptions.
|
| 25 |
+
|
| 26 |
+
---
|
| 27 |
+
### ⚖️ License
|
| 28 |
+
Licensed under the **Apache License 2.0**.
|
| 29 |
+
|
| 30 |
+
---
|
| 31 |
+
### ✍️ Author
|
| 32 |
+
Developed by **hmnshudhmn24** — 2025.
|
cli.py
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import argparse
|
| 2 |
+
from inference import generate_doc
|
| 3 |
+
|
| 4 |
+
if __name__ == "__main__":
|
| 5 |
+
parser = argparse.ArgumentParser()
|
| 6 |
+
parser.add_argument("file", help="Path to Python file to document")
|
| 7 |
+
args = parser.parse_args()
|
| 8 |
+
|
| 9 |
+
with open(args.file, "r") as f:
|
| 10 |
+
code = f.read()
|
| 11 |
+
print(generate_doc(code))
|
configs/train_config.json
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
{ "epochs": 3, "batch_size": 4, "learning_rate": 5e-5 }
|
data_examples/example_code.py
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
def factorial(n):
|
| 2 |
+
if n == 0:
|
| 3 |
+
return 1
|
| 4 |
+
return n * factorial(n - 1)
|
data_examples/example_expected.md
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
### factorial(n)
|
| 2 |
+
Computes factorial of a number recursively.
|
data_examples/sample_dataset.jsonl
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{"code": "def add(a, b): return a + b", "doc": "Add two numbers."}
|
| 2 |
+
{"code": "def square(x): return x*x", "doc": "Return square of x."}
|
inference.py
ADDED
|
@@ -0,0 +1,13 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
| 2 |
+
|
| 3 |
+
def generate_doc(code_snippet):
|
| 4 |
+
model_name = "trained_model"
|
| 5 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 6 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 7 |
+
|
| 8 |
+
inputs = tokenizer(code_snippet, return_tensors="pt")
|
| 9 |
+
outputs = model.generate(**inputs, max_length=128)
|
| 10 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 11 |
+
|
| 12 |
+
if __name__ == "__main__":
|
| 13 |
+
print(generate_doc("def multiply(a, b): return a * b"))
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
torch
|
| 3 |
+
datasets
|
| 4 |
+
numpy
|
tests/test_inference.py
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
def test_example(): assert True
|
train_codet5_docgen.py
ADDED
|
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, Trainer, TrainingArguments
|
| 2 |
+
from datasets import load_dataset
|
| 3 |
+
import torch, json
|
| 4 |
+
|
| 5 |
+
def train_model():
|
| 6 |
+
model_name = "Salesforce/codet5-small"
|
| 7 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 8 |
+
model = AutoModelForSeq2SeqLM.from_pretrained(model_name)
|
| 9 |
+
|
| 10 |
+
dataset = load_dataset("json", data_files={"train": "data_examples/sample_dataset.jsonl"})
|
| 11 |
+
def preprocess(batch):
|
| 12 |
+
inputs = tokenizer(batch["code"], truncation=True, padding="max_length", max_length=128)
|
| 13 |
+
labels = tokenizer(batch["doc"], truncation=True, padding="max_length", max_length=128)
|
| 14 |
+
inputs["labels"] = labels["input_ids"]
|
| 15 |
+
return inputs
|
| 16 |
+
tokenized = dataset["train"].map(preprocess, batched=True)
|
| 17 |
+
|
| 18 |
+
args = TrainingArguments(
|
| 19 |
+
output_dir="results",
|
| 20 |
+
num_train_epochs=3,
|
| 21 |
+
per_device_train_batch_size=2,
|
| 22 |
+
save_strategy="epoch",
|
| 23 |
+
logging_dir="logs",
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
trainer = Trainer(model=model, args=args, train_dataset=tokenized)
|
| 27 |
+
trainer.train()
|
| 28 |
+
model.save_pretrained("trained_model")
|
| 29 |
+
tokenizer.save_pretrained("trained_model")
|
| 30 |
+
|
| 31 |
+
if __name__ == "__main__":
|
| 32 |
+
train_model()
|
utils.py
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
def count_lines(file_path):
|
| 2 |
+
with open(file_path) as f:
|
| 3 |
+
return len(f.readlines())
|