from transformers import AutoTokenizer, AutoModelForSeq2SeqLM def generate_doc(code_snippet): model_name = "trained_model" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name) inputs = tokenizer(code_snippet, return_tensors="pt") outputs = model.generate(**inputs, max_length=128) return tokenizer.decode(outputs[0], skip_special_tokens=True) if __name__ == "__main__": print(generate_doc("def multiply(a, b): return a * b"))