Upload 11 files
Browse files- .gitattributes +0 -33
- LICENSE +9 -0
- README.md +58 -3
- config.json +10 -0
- example_conversations.txt +8 -0
- inference.py +19 -0
- requirements.txt +5 -0
- special_tokens_map.json +6 -0
- tokenizer_config.json +5 -0
- train_chatbot.py +85 -0
- utils.py +19 -0
.gitattributes
CHANGED
|
@@ -1,35 +1,2 @@
|
|
| 1 |
-
*.7z filter=lfs diff=lfs merge=lfs -text
|
| 2 |
-
*.arrow filter=lfs diff=lfs merge=lfs -text
|
| 3 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
| 4 |
-
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
| 5 |
-
*.ckpt filter=lfs diff=lfs merge=lfs -text
|
| 6 |
-
*.ftz filter=lfs diff=lfs merge=lfs -text
|
| 7 |
-
*.gz filter=lfs diff=lfs merge=lfs -text
|
| 8 |
-
*.h5 filter=lfs diff=lfs merge=lfs -text
|
| 9 |
-
*.joblib filter=lfs diff=lfs merge=lfs -text
|
| 10 |
-
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
| 11 |
-
*.mlmodel filter=lfs diff=lfs merge=lfs -text
|
| 12 |
-
*.model filter=lfs diff=lfs merge=lfs -text
|
| 13 |
-
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
| 14 |
-
*.npy filter=lfs diff=lfs merge=lfs -text
|
| 15 |
-
*.npz filter=lfs diff=lfs merge=lfs -text
|
| 16 |
-
*.onnx filter=lfs diff=lfs merge=lfs -text
|
| 17 |
-
*.ot filter=lfs diff=lfs merge=lfs -text
|
| 18 |
-
*.parquet filter=lfs diff=lfs merge=lfs -text
|
| 19 |
-
*.pb filter=lfs diff=lfs merge=lfs -text
|
| 20 |
-
*.pickle filter=lfs diff=lfs merge=lfs -text
|
| 21 |
-
*.pkl filter=lfs diff=lfs merge=lfs -text
|
| 22 |
-
*.pt filter=lfs diff=lfs merge=lfs -text
|
| 23 |
-
*.pth filter=lfs diff=lfs merge=lfs -text
|
| 24 |
-
*.rar filter=lfs diff=lfs merge=lfs -text
|
| 25 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
| 26 |
-
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
| 27 |
-
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
| 28 |
-
*.tar filter=lfs diff=lfs merge=lfs -text
|
| 29 |
-
*.tflite filter=lfs diff=lfs merge=lfs -text
|
| 30 |
-
*.tgz filter=lfs diff=lfs merge=lfs -text
|
| 31 |
-
*.wasm filter=lfs diff=lfs merge=lfs -text
|
| 32 |
-
*.xz filter=lfs diff=lfs merge=lfs -text
|
| 33 |
-
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
-
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
-
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
| 1 |
*.bin filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LICENSE
ADDED
|
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Apache License 2.0
|
| 2 |
+
|
| 3 |
+
Copyright 2025 hmnshudhmn24
|
| 4 |
+
|
| 5 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
| 6 |
+
you may not use this file except in compliance with the License.
|
| 7 |
+
You may obtain a copy of the License at
|
| 8 |
+
|
| 9 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
README.md
CHANGED
|
@@ -1,3 +1,58 @@
|
|
| 1 |
-
---
|
| 2 |
-
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: en
|
| 3 |
+
license: apache-2.0
|
| 4 |
+
datasets: daily_dialog
|
| 5 |
+
pipeline_tag: text-generation
|
| 6 |
+
library_name: transformers
|
| 7 |
+
tags:
|
| 8 |
+
- gpt2
|
| 9 |
+
- conversational
|
| 10 |
+
- chatbot
|
| 11 |
+
- nlp
|
| 12 |
+
base_model: gpt2
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
# GPT-2 Personal Assistant
|
| 16 |
+
|
| 17 |
+
**Model repo:** `hmnshudhmn24/gpt2-personal-assistant`
|
| 18 |
+
A lightweight conversational assistant based on **GPT-2**, fine-tuned on the **DailyDialog** dataset for chat and casual Q&A.
|
| 19 |
+
|
| 20 |
+
## Model details
|
| 21 |
+
- **Base model:** gpt2
|
| 22 |
+
- **Task:** Conversational text generation / Chatbot
|
| 23 |
+
- **Dataset used for demo:** daily_dialog (small subset used in training script for quick demo)
|
| 24 |
+
- **Language:** English
|
| 25 |
+
- **License:** Apache-2.0
|
| 26 |
+
|
| 27 |
+
## How to use (inference)
|
| 28 |
+
|
| 29 |
+
```python
|
| 30 |
+
from transformers import pipeline
|
| 31 |
+
|
| 32 |
+
generator = pipeline("text-generation", model="hmnshudhmn24/gpt2-personal-assistant")
|
| 33 |
+
prompt = "User: Hello\nAssistant: Hi! How can I help you?\nUser: What's the weather like today?\nAssistant:"
|
| 34 |
+
print(generator(prompt, max_length=100, num_return_sequences=1)[0]["generated_text"])
|
| 35 |
+
```
|
| 36 |
+
|
| 37 |
+
## Train locally (quick demo)
|
| 38 |
+
Run:
|
| 39 |
+
```bash
|
| 40 |
+
python train_chatbot.py
|
| 41 |
+
```
|
| 42 |
+
This script fine-tunes `gpt2` on a subset of the DailyDialog dataset and saves the model to `./gpt2-personal-assistant` folder.
|
| 43 |
+
|
| 44 |
+
## Files in this repo
|
| 45 |
+
- `config.json`, `tokenizer_config.json`, `special_tokens_map.json` — model/tokenizer configs
|
| 46 |
+
- `train_chatbot.py` — training script (demo)
|
| 47 |
+
- `inference.py` — simple inference example
|
| 48 |
+
- `utils.py` — helper to build conversation prompts
|
| 49 |
+
- `example_conversations.txt` — small sample dialogues
|
| 50 |
+
- `requirements.txt` — Python dependencies
|
| 51 |
+
|
| 52 |
+
## Notes & limitations
|
| 53 |
+
- GPT-2 is a general-purpose LM; it can generate incorrect or unsafe outputs. Do not rely on it for critical advice.
|
| 54 |
+
- For production, use larger datasets, more epochs, and safety filtering.
|
| 55 |
+
- If uploading to Hugging Face, include `pytorch_model.bin` (weights) after training.
|
| 56 |
+
|
| 57 |
+
## License
|
| 58 |
+
Apache-2.0
|
config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"GPT2LMHeadModel"
|
| 4 |
+
],
|
| 5 |
+
"model_type": "gpt2",
|
| 6 |
+
"n_ctx": 1024,
|
| 7 |
+
"n_embd": 768,
|
| 8 |
+
"n_layer": 12,
|
| 9 |
+
"n_head": 12
|
| 10 |
+
}
|
example_conversations.txt
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
User: Hi, how are you?
|
| 2 |
+
Assistant: I'm good — thanks! How can I assist you today?
|
| 3 |
+
|
| 4 |
+
User: Tell me a short joke.
|
| 5 |
+
Assistant: Why did the scarecrow win an award? Because he was outstanding in his field!
|
| 6 |
+
|
| 7 |
+
User: How can I improve my focus while studying?
|
| 8 |
+
Assistant: Create a distraction-free environment, use short focused sessions (25–50 minutes), take regular breaks, and set clear goals.
|
inference.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# inference.py
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
from utils import build_conversation_prompt
|
| 4 |
+
|
| 5 |
+
MODEL_ID = "hmnshudhmn24/gpt2-personal-assistant"
|
| 6 |
+
|
| 7 |
+
def chat_once(model_id=MODEL_ID):
|
| 8 |
+
generator = pipeline("text-generation", model=model_id, tokenizer=model_id, device=0 if __import__('torch').cuda.is_available() else -1)
|
| 9 |
+
history = [
|
| 10 |
+
"User: Hello!",
|
| 11 |
+
"Assistant: Hi there! How can I help you today?"
|
| 12 |
+
]
|
| 13 |
+
user_input = "Can you summarize the benefits of exercise?"
|
| 14 |
+
prompt = build_conversation_prompt(history, user_input, system_prompt="You are a helpful assistant.")
|
| 15 |
+
outputs = generator(prompt, max_length=300, num_return_sequences=1, do_sample=False, pad_token_id=50256)
|
| 16 |
+
print(outputs[0]["generated_text"])
|
| 17 |
+
|
| 18 |
+
if __name__ == "__main__":
|
| 19 |
+
chat_once()
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers>=4.44.0
|
| 2 |
+
datasets>=2.21.0
|
| 3 |
+
torch>=1.12.0
|
| 4 |
+
accelerate>=0.20.3
|
| 5 |
+
sentencepiece
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"eos_token": "",
|
| 3 |
+
"bos_token": " ",
|
| 4 |
+
"unk_token": "<|unk|>",
|
| 5 |
+
"pad_token": "<|pad|>"
|
| 6 |
+
}
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_max_length": 1024,
|
| 3 |
+
"padding_side": "left",
|
| 4 |
+
"truncation_side": "right"
|
| 5 |
+
}
|
train_chatbot.py
ADDED
|
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# train_chatbot.py
|
| 2 |
+
import os
|
| 3 |
+
from datasets import load_dataset
|
| 4 |
+
from transformers import (
|
| 5 |
+
GPT2TokenizerFast,
|
| 6 |
+
GPT2LMHeadModel,
|
| 7 |
+
DataCollatorForLanguageModeling,
|
| 8 |
+
Trainer,
|
| 9 |
+
TrainingArguments
|
| 10 |
+
)
|
| 11 |
+
import torch
|
| 12 |
+
|
| 13 |
+
# === EDITABLE SETTINGS ===
|
| 14 |
+
HF_USERNAME = "hmnshudhmn24"
|
| 15 |
+
REPO_ID = f"{HF_USERNAME}/gpt2-personal-assistant"
|
| 16 |
+
BASE_MODEL = "gpt2"
|
| 17 |
+
OUTPUT_DIR = "./results"
|
| 18 |
+
MAX_TRAIN_SAMPLES = 4000
|
| 19 |
+
MAX_VAL_SAMPLES = 500
|
| 20 |
+
EPOCHS = 1
|
| 21 |
+
BATCH_SIZE = 4
|
| 22 |
+
LEARNING_RATE = 5e-5
|
| 23 |
+
# =========================
|
| 24 |
+
|
| 25 |
+
def prepare_dataset():
|
| 26 |
+
ds = load_dataset("daily_dialog")
|
| 27 |
+
def to_text(ex):
|
| 28 |
+
dialog = ex["dialog"]
|
| 29 |
+
text = "\n".join(dialog)
|
| 30 |
+
return {"text": text}
|
| 31 |
+
ds = ds.map(to_text, remove_columns=ds["train"].column_names)
|
| 32 |
+
ds["train"] = ds["train"].select(range(min(MAX_TRAIN_SAMPLES, len(ds["train"]))))
|
| 33 |
+
ds["validation"] = ds["validation"].select(range(min(MAX_VAL_SAMPLES, len(ds["validation"]))))
|
| 34 |
+
return ds
|
| 35 |
+
|
| 36 |
+
def main():
|
| 37 |
+
tokenizer = GPT2TokenizerFast.from_pretrained(BASE_MODEL)
|
| 38 |
+
if tokenizer.pad_token is None:
|
| 39 |
+
tokenizer.add_special_tokens({"pad_token": "<|pad|>"})
|
| 40 |
+
model = GPT2LMHeadModel.from_pretrained(BASE_MODEL)
|
| 41 |
+
model.resize_token_embeddings(len(tokenizer))
|
| 42 |
+
|
| 43 |
+
ds = prepare_dataset()
|
| 44 |
+
|
| 45 |
+
def tokenize_batch(examples):
|
| 46 |
+
return tokenizer(examples["text"], truncation=True, max_length=512)
|
| 47 |
+
|
| 48 |
+
tokenized = ds.map(tokenize_batch, batched=True, remove_columns=["text"])
|
| 49 |
+
|
| 50 |
+
data_collator = DataCollatorForLanguageModeling(tokenizer=tokenizer, mlm=False)
|
| 51 |
+
|
| 52 |
+
training_args = TrainingArguments(
|
| 53 |
+
output_dir=OUTPUT_DIR,
|
| 54 |
+
overwrite_output_dir=True,
|
| 55 |
+
num_train_epochs=EPOCHS,
|
| 56 |
+
per_device_train_batch_size=BATCH_SIZE,
|
| 57 |
+
per_device_eval_batch_size=BATCH_SIZE,
|
| 58 |
+
evaluation_strategy="epoch",
|
| 59 |
+
save_strategy="epoch",
|
| 60 |
+
learning_rate=LEARNING_RATE,
|
| 61 |
+
weight_decay=0.01,
|
| 62 |
+
fp16=torch.cuda.is_available(),
|
| 63 |
+
push_to_hub=False,
|
| 64 |
+
logging_steps=100
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
trainer = Trainer(
|
| 68 |
+
model=model,
|
| 69 |
+
args=training_args,
|
| 70 |
+
train_dataset=tokenized["train"],
|
| 71 |
+
eval_dataset=tokenized["validation"],
|
| 72 |
+
data_collator=data_collator,
|
| 73 |
+
tokenizer=tokenizer
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
trainer.train()
|
| 77 |
+
|
| 78 |
+
save_path = "./gpt2-personal-assistant"
|
| 79 |
+
os.makedirs(save_path, exist_ok=True)
|
| 80 |
+
trainer.save_model(save_path)
|
| 81 |
+
tokenizer.save_pretrained(save_path)
|
| 82 |
+
print(f"Model and tokenizer saved to {save_path}")
|
| 83 |
+
|
| 84 |
+
if __name__ == "__main__":
|
| 85 |
+
main()
|
utils.py
ADDED
|
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# utils.py
|
| 2 |
+
from typing import List
|
| 3 |
+
|
| 4 |
+
def build_conversation_prompt(history: List[str], user_input: str, system_prompt: str = None) -> str:
|
| 5 |
+
"""
|
| 6 |
+
Build a single string prompt for the causal LM from conversation history and the new user input.
|
| 7 |
+
|
| 8 |
+
history: list of previous lines (alternating user/assistant) or full conversation pieces.
|
| 9 |
+
user_input: current user message.
|
| 10 |
+
system_prompt: optional introductory prompt at beginning.
|
| 11 |
+
"""
|
| 12 |
+
parts = []
|
| 13 |
+
if system_prompt:
|
| 14 |
+
parts.append(system_prompt.strip())
|
| 15 |
+
for i, h in enumerate(history):
|
| 16 |
+
parts.append(h.strip())
|
| 17 |
+
parts.append("User: " + user_input.strip())
|
| 18 |
+
parts.append("Assistant:")
|
| 19 |
+
return "\n".join(parts)
|