--- language: - en license: apache-2.0 tags: - text-generation - llama - qlora - peft base_model: TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T datasets: - HuggingFaceH4/ultrachat_200k --- # hoangtung386/TinyLlama-1.1B-qlora Fine-tuned version of [TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T](https://huggingface.co/TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T) using QLoRA. ## Model Details - **Base Model:** TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T - **Method:** QLoRA (Quantized Low-Rank Adaptation) - **Dataset:** HuggingFaceH4/ultrachat_200k - **Training Samples:** 5,000 ## Training Configuration ### LoRA Config ```yaml r: 64 lora_alpha: 32 lora_dropout: 0.1 target_modules: {'k_proj', 'gate_proj', 'up_proj', 'down_proj', 'v_proj', 'q_proj', 'o_proj'} ``` ### Training Args ```yaml learning_rate: 0.0002 epochs: 3 batch_size: 2 gradient_accumulation: 4 optimizer: OptimizerNames.PAGED_ADAMW scheduler: SchedulerType.COSINE ``` ## Training Results | Metric | Value | |--------|-------| | Loss | 1.2668 | | Runtime | 7698.13s | | Samples/sec | 1.95 | | Steps | N/A | ## Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM tokenizer = AutoTokenizer.from_pretrained("hoangtung386/TinyLlama-1.1B-qlora") model = AutoModelForCausalLM.from_pretrained("hoangtung386/TinyLlama-1.1B-qlora") prompt = "<|user|>\nWhat is AI?\n<|assistant|>\n" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=256) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` ## Framework Versions - Transformers: 4.41.2 - PyTorch: 2.5.1+cu124 - PEFT: 0.11.1 - TRL: 0.9.4