Mayank Mishra
commited on
Commit
·
0e6c38f
1
Parent(s):
e82da12
upload model
Browse files- config.json +40 -0
- configuration_granite.py +98 -0
- generation_config.json +7 -0
- model-00001-of-00007.safetensors +3 -0
- model-00002-of-00007.safetensors +3 -0
- model-00003-of-00007.safetensors +3 -0
- model-00004-of-00007.safetensors +3 -0
- model-00005-of-00007.safetensors +3 -0
- model-00006-of-00007.safetensors +3 -0
- model-00007-of-00007.safetensors +3 -0
- model.safetensors.index.json +369 -0
- modeling_granite.py +1376 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +187 -0
config.json
ADDED
|
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"activation_function": "swiglu",
|
| 3 |
+
"add_bias": true,
|
| 4 |
+
"apply_residual_connection_post_layernorm": false,
|
| 5 |
+
"architectures": [
|
| 6 |
+
"GraniteForCausalLM"
|
| 7 |
+
],
|
| 8 |
+
"attention_head_type": "gqa",
|
| 9 |
+
"attention_multiplier": null,
|
| 10 |
+
"attention_softmax_in_fp32": true,
|
| 11 |
+
"attn_pdrop": 0.1,
|
| 12 |
+
"auto_map": {
|
| 13 |
+
"AutoConfig": "configuration_granite.GraniteConfig",
|
| 14 |
+
"AutoModel": "modeling_granite.GraniteModel",
|
| 15 |
+
"AutoModelForCausalLM": "modeling_granite.GraniteForCausalLM"
|
| 16 |
+
},
|
| 17 |
+
"bos_token_id": 0,
|
| 18 |
+
"embd_pdrop": 0.1,
|
| 19 |
+
"eos_token_id": 0,
|
| 20 |
+
"initializer_range": 0.02,
|
| 21 |
+
"layer_norm_epsilon": 1e-05,
|
| 22 |
+
"model_type": "granite",
|
| 23 |
+
"n_embd": 4096,
|
| 24 |
+
"n_head": 32,
|
| 25 |
+
"n_inner": 14336,
|
| 26 |
+
"n_layer": 36,
|
| 27 |
+
"n_positions": 4096,
|
| 28 |
+
"normalization_function": "rmsnorm",
|
| 29 |
+
"num_key_value_heads": 8,
|
| 30 |
+
"pad_token_id": 0,
|
| 31 |
+
"position_embedding_type": "rope",
|
| 32 |
+
"resid_pdrop": 0.1,
|
| 33 |
+
"rope_theta": 10000,
|
| 34 |
+
"scale_attention_softmax_in_fp32": true,
|
| 35 |
+
"scale_attn_weights": true,
|
| 36 |
+
"torch_dtype": "float32",
|
| 37 |
+
"transformers_version": "4.38.1",
|
| 38 |
+
"use_cache": true,
|
| 39 |
+
"vocab_size": 49152
|
| 40 |
+
}
|
configuration_granite.py
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import PretrainedConfig
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
class GraniteConfig(PretrainedConfig):
|
| 5 |
+
model_type = "granite"
|
| 6 |
+
|
| 7 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 8 |
+
attribute_map = {
|
| 9 |
+
"hidden_size": "n_embd",
|
| 10 |
+
"max_position_embeddings": "n_positions",
|
| 11 |
+
"num_attention_heads": "n_head",
|
| 12 |
+
"num_hidden_layers": "n_layer",
|
| 13 |
+
}
|
| 14 |
+
|
| 15 |
+
def __init__(
|
| 16 |
+
self,
|
| 17 |
+
vocab_size: int = 50257,
|
| 18 |
+
n_positions: int = 1024,
|
| 19 |
+
n_embd: int = 768,
|
| 20 |
+
n_layer: int = 12,
|
| 21 |
+
n_head: int = 12,
|
| 22 |
+
num_key_value_heads: int = None,
|
| 23 |
+
n_inner: int = None,
|
| 24 |
+
activation_function: str = "gelu_pytorch_tanh",
|
| 25 |
+
attention_head_type: str = "mqa",
|
| 26 |
+
resid_pdrop: float = 0.1,
|
| 27 |
+
embd_pdrop: float = 0.1,
|
| 28 |
+
attn_pdrop: float = 0.1,
|
| 29 |
+
normalization_function: str = "layernorm",
|
| 30 |
+
layer_norm_epsilon: float = 1e-5,
|
| 31 |
+
initializer_range: float = 0.02,
|
| 32 |
+
scale_attn_weights: bool = True,
|
| 33 |
+
attention_multiplier: float = None,
|
| 34 |
+
use_cache: bool = True,
|
| 35 |
+
bos_token_id: int = 50256,
|
| 36 |
+
eos_token_id: int = 50256,
|
| 37 |
+
pad_token_id: int = 50256,
|
| 38 |
+
attention_softmax_in_fp32: bool = True,
|
| 39 |
+
scale_attention_softmax_in_fp32: bool = True,
|
| 40 |
+
add_bias: bool = True,
|
| 41 |
+
position_embedding_type: str = "learned_absolute",
|
| 42 |
+
rope_theta: int = 10000,
|
| 43 |
+
**kwargs,
|
| 44 |
+
) -> None:
|
| 45 |
+
self.vocab_size = vocab_size
|
| 46 |
+
self.n_positions = n_positions
|
| 47 |
+
self.n_embd = n_embd
|
| 48 |
+
self.n_layer = n_layer
|
| 49 |
+
self.n_head = n_head
|
| 50 |
+
self.num_key_value_heads = num_key_value_heads
|
| 51 |
+
self.n_inner = 4 * n_embd if n_inner is None else n_inner
|
| 52 |
+
self.activation_function = activation_function
|
| 53 |
+
self.attention_head_type = attention_head_type
|
| 54 |
+
self.resid_pdrop = resid_pdrop
|
| 55 |
+
self.embd_pdrop = embd_pdrop
|
| 56 |
+
self.attn_pdrop = attn_pdrop
|
| 57 |
+
self.normalization_function = normalization_function
|
| 58 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
| 59 |
+
self.initializer_range = initializer_range
|
| 60 |
+
self.scale_attn_weights = scale_attn_weights
|
| 61 |
+
self.attention_multiplier = attention_multiplier
|
| 62 |
+
self.use_cache = use_cache
|
| 63 |
+
self.attention_softmax_in_fp32 = attention_softmax_in_fp32
|
| 64 |
+
self.scale_attention_softmax_in_fp32 = scale_attention_softmax_in_fp32
|
| 65 |
+
self.position_embedding_type = position_embedding_type
|
| 66 |
+
self.add_bias = add_bias
|
| 67 |
+
self.rope_theta = rope_theta
|
| 68 |
+
|
| 69 |
+
if self.attention_multiplier is not None:
|
| 70 |
+
assert self.scale_attn_weights
|
| 71 |
+
|
| 72 |
+
# for compatibility with some features
|
| 73 |
+
self.multi_query = attention_head_type == "mqa"
|
| 74 |
+
|
| 75 |
+
if attention_head_type == "mha":
|
| 76 |
+
if self.num_key_value_heads is None:
|
| 77 |
+
self.num_key_value_heads = self.n_head
|
| 78 |
+
|
| 79 |
+
assert (
|
| 80 |
+
self.n_head == self.num_key_value_heads
|
| 81 |
+
), "MultiHeadAttention should have same number of heads for query, keys and values"
|
| 82 |
+
elif attention_head_type == "mqa":
|
| 83 |
+
if self.num_key_value_heads is None:
|
| 84 |
+
self.num_key_value_heads = 1
|
| 85 |
+
|
| 86 |
+
assert self.num_key_value_heads == 1, "MultiQueryAttention should have 1 head for keys and values"
|
| 87 |
+
elif attention_head_type == "gqa":
|
| 88 |
+
assert (
|
| 89 |
+
self.num_key_value_heads is not None
|
| 90 |
+
), "`num_key_value_heads` needs to be specified with GroupedQueryAttention"
|
| 91 |
+
|
| 92 |
+
assert (
|
| 93 |
+
self.n_head % self.num_key_value_heads == 0
|
| 94 |
+
), "GroupedQueryAttention should have more than 1 head for keys and values"
|
| 95 |
+
else:
|
| 96 |
+
raise ValueError(f"unexpected attention_head_type ({attention_head_type})")
|
| 97 |
+
|
| 98 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id, pad_token_id=pad_token_id, **kwargs)
|
generation_config.json
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_from_model_config": true,
|
| 3 |
+
"bos_token_id": 0,
|
| 4 |
+
"eos_token_id": 0,
|
| 5 |
+
"pad_token_id": 0,
|
| 6 |
+
"transformers_version": "4.38.1"
|
| 7 |
+
}
|
model-00001-of-00007.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2aa28732a7ec623510ab63c06f1af7cb86c3050cf2b84e6e288864fac86c96aa
|
| 3 |
+
size 4933514320
|
model-00002-of-00007.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6227e504458fe50bdacd6dc0a38f03fc29d659c923ec704486283d74a5b7676f
|
| 3 |
+
size 4765849624
|
model-00003-of-00007.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:79332859e730c83aee6bb3fbcf499e6966c1bf9965f871d4e7080f25a820d792
|
| 3 |
+
size 4832982480
|
model-00004-of-00007.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d8403a71ea70c8dc20506a27354c7bc077681078c00c0de2d71ca2010bb2e41d
|
| 3 |
+
size 4765849680
|
model-00005-of-00007.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b19f69cad2d87854233bddf0adcca89d0099add537c4e50df3dbfd67adf8f185
|
| 3 |
+
size 4832982480
|
model-00006-of-00007.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:bddf280f58ced5a8d4d80dd0f6ee82abc786a5dfb616f4e8a44badbffe9353df
|
| 3 |
+
size 4765849680
|
model-00007-of-00007.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:66e4a5f4630e6edc448e4e6aaa49da21afc94d19b3f3cecdfa56a1809cae4f33
|
| 3 |
+
size 3322654376
|
model.safetensors.index.json
ADDED
|
@@ -0,0 +1,369 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"metadata": {
|
| 3 |
+
"total_size": 32219643904
|
| 4 |
+
},
|
| 5 |
+
"weight_map": {
|
| 6 |
+
"transformer.h.0.attn.c_attn.bias": "model-00001-of-00007.safetensors",
|
| 7 |
+
"transformer.h.0.attn.c_attn.weight": "model-00001-of-00007.safetensors",
|
| 8 |
+
"transformer.h.0.attn.c_proj.bias": "model-00001-of-00007.safetensors",
|
| 9 |
+
"transformer.h.0.attn.c_proj.weight": "model-00001-of-00007.safetensors",
|
| 10 |
+
"transformer.h.0.ln_1.weight": "model-00001-of-00007.safetensors",
|
| 11 |
+
"transformer.h.0.ln_2.weight": "model-00001-of-00007.safetensors",
|
| 12 |
+
"transformer.h.0.mlp.c_fc.bias": "model-00001-of-00007.safetensors",
|
| 13 |
+
"transformer.h.0.mlp.c_fc.weight": "model-00001-of-00007.safetensors",
|
| 14 |
+
"transformer.h.0.mlp.c_proj.bias": "model-00001-of-00007.safetensors",
|
| 15 |
+
"transformer.h.0.mlp.c_proj.weight": "model-00001-of-00007.safetensors",
|
| 16 |
+
"transformer.h.1.attn.c_attn.bias": "model-00001-of-00007.safetensors",
|
| 17 |
+
"transformer.h.1.attn.c_attn.weight": "model-00001-of-00007.safetensors",
|
| 18 |
+
"transformer.h.1.attn.c_proj.bias": "model-00001-of-00007.safetensors",
|
| 19 |
+
"transformer.h.1.attn.c_proj.weight": "model-00001-of-00007.safetensors",
|
| 20 |
+
"transformer.h.1.ln_1.weight": "model-00001-of-00007.safetensors",
|
| 21 |
+
"transformer.h.1.ln_2.weight": "model-00001-of-00007.safetensors",
|
| 22 |
+
"transformer.h.1.mlp.c_fc.bias": "model-00001-of-00007.safetensors",
|
| 23 |
+
"transformer.h.1.mlp.c_fc.weight": "model-00001-of-00007.safetensors",
|
| 24 |
+
"transformer.h.1.mlp.c_proj.bias": "model-00001-of-00007.safetensors",
|
| 25 |
+
"transformer.h.1.mlp.c_proj.weight": "model-00001-of-00007.safetensors",
|
| 26 |
+
"transformer.h.10.attn.c_attn.bias": "model-00002-of-00007.safetensors",
|
| 27 |
+
"transformer.h.10.attn.c_attn.weight": "model-00002-of-00007.safetensors",
|
| 28 |
+
"transformer.h.10.attn.c_proj.bias": "model-00002-of-00007.safetensors",
|
| 29 |
+
"transformer.h.10.attn.c_proj.weight": "model-00002-of-00007.safetensors",
|
| 30 |
+
"transformer.h.10.ln_1.weight": "model-00002-of-00007.safetensors",
|
| 31 |
+
"transformer.h.10.ln_2.weight": "model-00002-of-00007.safetensors",
|
| 32 |
+
"transformer.h.10.mlp.c_fc.bias": "model-00003-of-00007.safetensors",
|
| 33 |
+
"transformer.h.10.mlp.c_fc.weight": "model-00003-of-00007.safetensors",
|
| 34 |
+
"transformer.h.10.mlp.c_proj.bias": "model-00003-of-00007.safetensors",
|
| 35 |
+
"transformer.h.10.mlp.c_proj.weight": "model-00003-of-00007.safetensors",
|
| 36 |
+
"transformer.h.11.attn.c_attn.bias": "model-00003-of-00007.safetensors",
|
| 37 |
+
"transformer.h.11.attn.c_attn.weight": "model-00003-of-00007.safetensors",
|
| 38 |
+
"transformer.h.11.attn.c_proj.bias": "model-00003-of-00007.safetensors",
|
| 39 |
+
"transformer.h.11.attn.c_proj.weight": "model-00003-of-00007.safetensors",
|
| 40 |
+
"transformer.h.11.ln_1.weight": "model-00003-of-00007.safetensors",
|
| 41 |
+
"transformer.h.11.ln_2.weight": "model-00003-of-00007.safetensors",
|
| 42 |
+
"transformer.h.11.mlp.c_fc.bias": "model-00003-of-00007.safetensors",
|
| 43 |
+
"transformer.h.11.mlp.c_fc.weight": "model-00003-of-00007.safetensors",
|
| 44 |
+
"transformer.h.11.mlp.c_proj.bias": "model-00003-of-00007.safetensors",
|
| 45 |
+
"transformer.h.11.mlp.c_proj.weight": "model-00003-of-00007.safetensors",
|
| 46 |
+
"transformer.h.12.attn.c_attn.bias": "model-00003-of-00007.safetensors",
|
| 47 |
+
"transformer.h.12.attn.c_attn.weight": "model-00003-of-00007.safetensors",
|
| 48 |
+
"transformer.h.12.attn.c_proj.bias": "model-00003-of-00007.safetensors",
|
| 49 |
+
"transformer.h.12.attn.c_proj.weight": "model-00003-of-00007.safetensors",
|
| 50 |
+
"transformer.h.12.ln_1.weight": "model-00003-of-00007.safetensors",
|
| 51 |
+
"transformer.h.12.ln_2.weight": "model-00003-of-00007.safetensors",
|
| 52 |
+
"transformer.h.12.mlp.c_fc.bias": "model-00003-of-00007.safetensors",
|
| 53 |
+
"transformer.h.12.mlp.c_fc.weight": "model-00003-of-00007.safetensors",
|
| 54 |
+
"transformer.h.12.mlp.c_proj.bias": "model-00003-of-00007.safetensors",
|
| 55 |
+
"transformer.h.12.mlp.c_proj.weight": "model-00003-of-00007.safetensors",
|
| 56 |
+
"transformer.h.13.attn.c_attn.bias": "model-00003-of-00007.safetensors",
|
| 57 |
+
"transformer.h.13.attn.c_attn.weight": "model-00003-of-00007.safetensors",
|
| 58 |
+
"transformer.h.13.attn.c_proj.bias": "model-00003-of-00007.safetensors",
|
| 59 |
+
"transformer.h.13.attn.c_proj.weight": "model-00003-of-00007.safetensors",
|
| 60 |
+
"transformer.h.13.ln_1.weight": "model-00003-of-00007.safetensors",
|
| 61 |
+
"transformer.h.13.ln_2.weight": "model-00003-of-00007.safetensors",
|
| 62 |
+
"transformer.h.13.mlp.c_fc.bias": "model-00003-of-00007.safetensors",
|
| 63 |
+
"transformer.h.13.mlp.c_fc.weight": "model-00003-of-00007.safetensors",
|
| 64 |
+
"transformer.h.13.mlp.c_proj.bias": "model-00003-of-00007.safetensors",
|
| 65 |
+
"transformer.h.13.mlp.c_proj.weight": "model-00003-of-00007.safetensors",
|
| 66 |
+
"transformer.h.14.attn.c_attn.bias": "model-00003-of-00007.safetensors",
|
| 67 |
+
"transformer.h.14.attn.c_attn.weight": "model-00003-of-00007.safetensors",
|
| 68 |
+
"transformer.h.14.attn.c_proj.bias": "model-00003-of-00007.safetensors",
|
| 69 |
+
"transformer.h.14.attn.c_proj.weight": "model-00003-of-00007.safetensors",
|
| 70 |
+
"transformer.h.14.ln_1.weight": "model-00003-of-00007.safetensors",
|
| 71 |
+
"transformer.h.14.ln_2.weight": "model-00003-of-00007.safetensors",
|
| 72 |
+
"transformer.h.14.mlp.c_fc.bias": "model-00003-of-00007.safetensors",
|
| 73 |
+
"transformer.h.14.mlp.c_fc.weight": "model-00003-of-00007.safetensors",
|
| 74 |
+
"transformer.h.14.mlp.c_proj.bias": "model-00003-of-00007.safetensors",
|
| 75 |
+
"transformer.h.14.mlp.c_proj.weight": "model-00003-of-00007.safetensors",
|
| 76 |
+
"transformer.h.15.attn.c_attn.bias": "model-00003-of-00007.safetensors",
|
| 77 |
+
"transformer.h.15.attn.c_attn.weight": "model-00003-of-00007.safetensors",
|
| 78 |
+
"transformer.h.15.attn.c_proj.bias": "model-00003-of-00007.safetensors",
|
| 79 |
+
"transformer.h.15.attn.c_proj.weight": "model-00003-of-00007.safetensors",
|
| 80 |
+
"transformer.h.15.ln_1.weight": "model-00003-of-00007.safetensors",
|
| 81 |
+
"transformer.h.15.ln_2.weight": "model-00003-of-00007.safetensors",
|
| 82 |
+
"transformer.h.15.mlp.c_fc.bias": "model-00003-of-00007.safetensors",
|
| 83 |
+
"transformer.h.15.mlp.c_fc.weight": "model-00003-of-00007.safetensors",
|
| 84 |
+
"transformer.h.15.mlp.c_proj.bias": "model-00004-of-00007.safetensors",
|
| 85 |
+
"transformer.h.15.mlp.c_proj.weight": "model-00004-of-00007.safetensors",
|
| 86 |
+
"transformer.h.16.attn.c_attn.bias": "model-00004-of-00007.safetensors",
|
| 87 |
+
"transformer.h.16.attn.c_attn.weight": "model-00004-of-00007.safetensors",
|
| 88 |
+
"transformer.h.16.attn.c_proj.bias": "model-00004-of-00007.safetensors",
|
| 89 |
+
"transformer.h.16.attn.c_proj.weight": "model-00004-of-00007.safetensors",
|
| 90 |
+
"transformer.h.16.ln_1.weight": "model-00004-of-00007.safetensors",
|
| 91 |
+
"transformer.h.16.ln_2.weight": "model-00004-of-00007.safetensors",
|
| 92 |
+
"transformer.h.16.mlp.c_fc.bias": "model-00004-of-00007.safetensors",
|
| 93 |
+
"transformer.h.16.mlp.c_fc.weight": "model-00004-of-00007.safetensors",
|
| 94 |
+
"transformer.h.16.mlp.c_proj.bias": "model-00004-of-00007.safetensors",
|
| 95 |
+
"transformer.h.16.mlp.c_proj.weight": "model-00004-of-00007.safetensors",
|
| 96 |
+
"transformer.h.17.attn.c_attn.bias": "model-00004-of-00007.safetensors",
|
| 97 |
+
"transformer.h.17.attn.c_attn.weight": "model-00004-of-00007.safetensors",
|
| 98 |
+
"transformer.h.17.attn.c_proj.bias": "model-00004-of-00007.safetensors",
|
| 99 |
+
"transformer.h.17.attn.c_proj.weight": "model-00004-of-00007.safetensors",
|
| 100 |
+
"transformer.h.17.ln_1.weight": "model-00004-of-00007.safetensors",
|
| 101 |
+
"transformer.h.17.ln_2.weight": "model-00004-of-00007.safetensors",
|
| 102 |
+
"transformer.h.17.mlp.c_fc.bias": "model-00004-of-00007.safetensors",
|
| 103 |
+
"transformer.h.17.mlp.c_fc.weight": "model-00004-of-00007.safetensors",
|
| 104 |
+
"transformer.h.17.mlp.c_proj.bias": "model-00004-of-00007.safetensors",
|
| 105 |
+
"transformer.h.17.mlp.c_proj.weight": "model-00004-of-00007.safetensors",
|
| 106 |
+
"transformer.h.18.attn.c_attn.bias": "model-00004-of-00007.safetensors",
|
| 107 |
+
"transformer.h.18.attn.c_attn.weight": "model-00004-of-00007.safetensors",
|
| 108 |
+
"transformer.h.18.attn.c_proj.bias": "model-00004-of-00007.safetensors",
|
| 109 |
+
"transformer.h.18.attn.c_proj.weight": "model-00004-of-00007.safetensors",
|
| 110 |
+
"transformer.h.18.ln_1.weight": "model-00004-of-00007.safetensors",
|
| 111 |
+
"transformer.h.18.ln_2.weight": "model-00004-of-00007.safetensors",
|
| 112 |
+
"transformer.h.18.mlp.c_fc.bias": "model-00004-of-00007.safetensors",
|
| 113 |
+
"transformer.h.18.mlp.c_fc.weight": "model-00004-of-00007.safetensors",
|
| 114 |
+
"transformer.h.18.mlp.c_proj.bias": "model-00004-of-00007.safetensors",
|
| 115 |
+
"transformer.h.18.mlp.c_proj.weight": "model-00004-of-00007.safetensors",
|
| 116 |
+
"transformer.h.19.attn.c_attn.bias": "model-00004-of-00007.safetensors",
|
| 117 |
+
"transformer.h.19.attn.c_attn.weight": "model-00004-of-00007.safetensors",
|
| 118 |
+
"transformer.h.19.attn.c_proj.bias": "model-00004-of-00007.safetensors",
|
| 119 |
+
"transformer.h.19.attn.c_proj.weight": "model-00004-of-00007.safetensors",
|
| 120 |
+
"transformer.h.19.ln_1.weight": "model-00004-of-00007.safetensors",
|
| 121 |
+
"transformer.h.19.ln_2.weight": "model-00004-of-00007.safetensors",
|
| 122 |
+
"transformer.h.19.mlp.c_fc.bias": "model-00004-of-00007.safetensors",
|
| 123 |
+
"transformer.h.19.mlp.c_fc.weight": "model-00004-of-00007.safetensors",
|
| 124 |
+
"transformer.h.19.mlp.c_proj.bias": "model-00004-of-00007.safetensors",
|
| 125 |
+
"transformer.h.19.mlp.c_proj.weight": "model-00004-of-00007.safetensors",
|
| 126 |
+
"transformer.h.2.attn.c_attn.bias": "model-00001-of-00007.safetensors",
|
| 127 |
+
"transformer.h.2.attn.c_attn.weight": "model-00001-of-00007.safetensors",
|
| 128 |
+
"transformer.h.2.attn.c_proj.bias": "model-00001-of-00007.safetensors",
|
| 129 |
+
"transformer.h.2.attn.c_proj.weight": "model-00001-of-00007.safetensors",
|
| 130 |
+
"transformer.h.2.ln_1.weight": "model-00001-of-00007.safetensors",
|
| 131 |
+
"transformer.h.2.ln_2.weight": "model-00001-of-00007.safetensors",
|
| 132 |
+
"transformer.h.2.mlp.c_fc.bias": "model-00001-of-00007.safetensors",
|
| 133 |
+
"transformer.h.2.mlp.c_fc.weight": "model-00001-of-00007.safetensors",
|
| 134 |
+
"transformer.h.2.mlp.c_proj.bias": "model-00001-of-00007.safetensors",
|
| 135 |
+
"transformer.h.2.mlp.c_proj.weight": "model-00001-of-00007.safetensors",
|
| 136 |
+
"transformer.h.20.attn.c_attn.bias": "model-00004-of-00007.safetensors",
|
| 137 |
+
"transformer.h.20.attn.c_attn.weight": "model-00004-of-00007.safetensors",
|
| 138 |
+
"transformer.h.20.attn.c_proj.bias": "model-00004-of-00007.safetensors",
|
| 139 |
+
"transformer.h.20.attn.c_proj.weight": "model-00004-of-00007.safetensors",
|
| 140 |
+
"transformer.h.20.ln_1.weight": "model-00004-of-00007.safetensors",
|
| 141 |
+
"transformer.h.20.ln_2.weight": "model-00004-of-00007.safetensors",
|
| 142 |
+
"transformer.h.20.mlp.c_fc.bias": "model-00004-of-00007.safetensors",
|
| 143 |
+
"transformer.h.20.mlp.c_fc.weight": "model-00004-of-00007.safetensors",
|
| 144 |
+
"transformer.h.20.mlp.c_proj.bias": "model-00004-of-00007.safetensors",
|
| 145 |
+
"transformer.h.20.mlp.c_proj.weight": "model-00004-of-00007.safetensors",
|
| 146 |
+
"transformer.h.21.attn.c_attn.bias": "model-00004-of-00007.safetensors",
|
| 147 |
+
"transformer.h.21.attn.c_attn.weight": "model-00004-of-00007.safetensors",
|
| 148 |
+
"transformer.h.21.attn.c_proj.bias": "model-00004-of-00007.safetensors",
|
| 149 |
+
"transformer.h.21.attn.c_proj.weight": "model-00004-of-00007.safetensors",
|
| 150 |
+
"transformer.h.21.ln_1.weight": "model-00004-of-00007.safetensors",
|
| 151 |
+
"transformer.h.21.ln_2.weight": "model-00004-of-00007.safetensors",
|
| 152 |
+
"transformer.h.21.mlp.c_fc.bias": "model-00005-of-00007.safetensors",
|
| 153 |
+
"transformer.h.21.mlp.c_fc.weight": "model-00005-of-00007.safetensors",
|
| 154 |
+
"transformer.h.21.mlp.c_proj.bias": "model-00005-of-00007.safetensors",
|
| 155 |
+
"transformer.h.21.mlp.c_proj.weight": "model-00005-of-00007.safetensors",
|
| 156 |
+
"transformer.h.22.attn.c_attn.bias": "model-00005-of-00007.safetensors",
|
| 157 |
+
"transformer.h.22.attn.c_attn.weight": "model-00005-of-00007.safetensors",
|
| 158 |
+
"transformer.h.22.attn.c_proj.bias": "model-00005-of-00007.safetensors",
|
| 159 |
+
"transformer.h.22.attn.c_proj.weight": "model-00005-of-00007.safetensors",
|
| 160 |
+
"transformer.h.22.ln_1.weight": "model-00005-of-00007.safetensors",
|
| 161 |
+
"transformer.h.22.ln_2.weight": "model-00005-of-00007.safetensors",
|
| 162 |
+
"transformer.h.22.mlp.c_fc.bias": "model-00005-of-00007.safetensors",
|
| 163 |
+
"transformer.h.22.mlp.c_fc.weight": "model-00005-of-00007.safetensors",
|
| 164 |
+
"transformer.h.22.mlp.c_proj.bias": "model-00005-of-00007.safetensors",
|
| 165 |
+
"transformer.h.22.mlp.c_proj.weight": "model-00005-of-00007.safetensors",
|
| 166 |
+
"transformer.h.23.attn.c_attn.bias": "model-00005-of-00007.safetensors",
|
| 167 |
+
"transformer.h.23.attn.c_attn.weight": "model-00005-of-00007.safetensors",
|
| 168 |
+
"transformer.h.23.attn.c_proj.bias": "model-00005-of-00007.safetensors",
|
| 169 |
+
"transformer.h.23.attn.c_proj.weight": "model-00005-of-00007.safetensors",
|
| 170 |
+
"transformer.h.23.ln_1.weight": "model-00005-of-00007.safetensors",
|
| 171 |
+
"transformer.h.23.ln_2.weight": "model-00005-of-00007.safetensors",
|
| 172 |
+
"transformer.h.23.mlp.c_fc.bias": "model-00005-of-00007.safetensors",
|
| 173 |
+
"transformer.h.23.mlp.c_fc.weight": "model-00005-of-00007.safetensors",
|
| 174 |
+
"transformer.h.23.mlp.c_proj.bias": "model-00005-of-00007.safetensors",
|
| 175 |
+
"transformer.h.23.mlp.c_proj.weight": "model-00005-of-00007.safetensors",
|
| 176 |
+
"transformer.h.24.attn.c_attn.bias": "model-00005-of-00007.safetensors",
|
| 177 |
+
"transformer.h.24.attn.c_attn.weight": "model-00005-of-00007.safetensors",
|
| 178 |
+
"transformer.h.24.attn.c_proj.bias": "model-00005-of-00007.safetensors",
|
| 179 |
+
"transformer.h.24.attn.c_proj.weight": "model-00005-of-00007.safetensors",
|
| 180 |
+
"transformer.h.24.ln_1.weight": "model-00005-of-00007.safetensors",
|
| 181 |
+
"transformer.h.24.ln_2.weight": "model-00005-of-00007.safetensors",
|
| 182 |
+
"transformer.h.24.mlp.c_fc.bias": "model-00005-of-00007.safetensors",
|
| 183 |
+
"transformer.h.24.mlp.c_fc.weight": "model-00005-of-00007.safetensors",
|
| 184 |
+
"transformer.h.24.mlp.c_proj.bias": "model-00005-of-00007.safetensors",
|
| 185 |
+
"transformer.h.24.mlp.c_proj.weight": "model-00005-of-00007.safetensors",
|
| 186 |
+
"transformer.h.25.attn.c_attn.bias": "model-00005-of-00007.safetensors",
|
| 187 |
+
"transformer.h.25.attn.c_attn.weight": "model-00005-of-00007.safetensors",
|
| 188 |
+
"transformer.h.25.attn.c_proj.bias": "model-00005-of-00007.safetensors",
|
| 189 |
+
"transformer.h.25.attn.c_proj.weight": "model-00005-of-00007.safetensors",
|
| 190 |
+
"transformer.h.25.ln_1.weight": "model-00005-of-00007.safetensors",
|
| 191 |
+
"transformer.h.25.ln_2.weight": "model-00005-of-00007.safetensors",
|
| 192 |
+
"transformer.h.25.mlp.c_fc.bias": "model-00005-of-00007.safetensors",
|
| 193 |
+
"transformer.h.25.mlp.c_fc.weight": "model-00005-of-00007.safetensors",
|
| 194 |
+
"transformer.h.25.mlp.c_proj.bias": "model-00005-of-00007.safetensors",
|
| 195 |
+
"transformer.h.25.mlp.c_proj.weight": "model-00005-of-00007.safetensors",
|
| 196 |
+
"transformer.h.26.attn.c_attn.bias": "model-00005-of-00007.safetensors",
|
| 197 |
+
"transformer.h.26.attn.c_attn.weight": "model-00005-of-00007.safetensors",
|
| 198 |
+
"transformer.h.26.attn.c_proj.bias": "model-00005-of-00007.safetensors",
|
| 199 |
+
"transformer.h.26.attn.c_proj.weight": "model-00005-of-00007.safetensors",
|
| 200 |
+
"transformer.h.26.ln_1.weight": "model-00005-of-00007.safetensors",
|
| 201 |
+
"transformer.h.26.ln_2.weight": "model-00005-of-00007.safetensors",
|
| 202 |
+
"transformer.h.26.mlp.c_fc.bias": "model-00005-of-00007.safetensors",
|
| 203 |
+
"transformer.h.26.mlp.c_fc.weight": "model-00005-of-00007.safetensors",
|
| 204 |
+
"transformer.h.26.mlp.c_proj.bias": "model-00006-of-00007.safetensors",
|
| 205 |
+
"transformer.h.26.mlp.c_proj.weight": "model-00006-of-00007.safetensors",
|
| 206 |
+
"transformer.h.27.attn.c_attn.bias": "model-00006-of-00007.safetensors",
|
| 207 |
+
"transformer.h.27.attn.c_attn.weight": "model-00006-of-00007.safetensors",
|
| 208 |
+
"transformer.h.27.attn.c_proj.bias": "model-00006-of-00007.safetensors",
|
| 209 |
+
"transformer.h.27.attn.c_proj.weight": "model-00006-of-00007.safetensors",
|
| 210 |
+
"transformer.h.27.ln_1.weight": "model-00006-of-00007.safetensors",
|
| 211 |
+
"transformer.h.27.ln_2.weight": "model-00006-of-00007.safetensors",
|
| 212 |
+
"transformer.h.27.mlp.c_fc.bias": "model-00006-of-00007.safetensors",
|
| 213 |
+
"transformer.h.27.mlp.c_fc.weight": "model-00006-of-00007.safetensors",
|
| 214 |
+
"transformer.h.27.mlp.c_proj.bias": "model-00006-of-00007.safetensors",
|
| 215 |
+
"transformer.h.27.mlp.c_proj.weight": "model-00006-of-00007.safetensors",
|
| 216 |
+
"transformer.h.28.attn.c_attn.bias": "model-00006-of-00007.safetensors",
|
| 217 |
+
"transformer.h.28.attn.c_attn.weight": "model-00006-of-00007.safetensors",
|
| 218 |
+
"transformer.h.28.attn.c_proj.bias": "model-00006-of-00007.safetensors",
|
| 219 |
+
"transformer.h.28.attn.c_proj.weight": "model-00006-of-00007.safetensors",
|
| 220 |
+
"transformer.h.28.ln_1.weight": "model-00006-of-00007.safetensors",
|
| 221 |
+
"transformer.h.28.ln_2.weight": "model-00006-of-00007.safetensors",
|
| 222 |
+
"transformer.h.28.mlp.c_fc.bias": "model-00006-of-00007.safetensors",
|
| 223 |
+
"transformer.h.28.mlp.c_fc.weight": "model-00006-of-00007.safetensors",
|
| 224 |
+
"transformer.h.28.mlp.c_proj.bias": "model-00006-of-00007.safetensors",
|
| 225 |
+
"transformer.h.28.mlp.c_proj.weight": "model-00006-of-00007.safetensors",
|
| 226 |
+
"transformer.h.29.attn.c_attn.bias": "model-00006-of-00007.safetensors",
|
| 227 |
+
"transformer.h.29.attn.c_attn.weight": "model-00006-of-00007.safetensors",
|
| 228 |
+
"transformer.h.29.attn.c_proj.bias": "model-00006-of-00007.safetensors",
|
| 229 |
+
"transformer.h.29.attn.c_proj.weight": "model-00006-of-00007.safetensors",
|
| 230 |
+
"transformer.h.29.ln_1.weight": "model-00006-of-00007.safetensors",
|
| 231 |
+
"transformer.h.29.ln_2.weight": "model-00006-of-00007.safetensors",
|
| 232 |
+
"transformer.h.29.mlp.c_fc.bias": "model-00006-of-00007.safetensors",
|
| 233 |
+
"transformer.h.29.mlp.c_fc.weight": "model-00006-of-00007.safetensors",
|
| 234 |
+
"transformer.h.29.mlp.c_proj.bias": "model-00006-of-00007.safetensors",
|
| 235 |
+
"transformer.h.29.mlp.c_proj.weight": "model-00006-of-00007.safetensors",
|
| 236 |
+
"transformer.h.3.attn.c_attn.bias": "model-00001-of-00007.safetensors",
|
| 237 |
+
"transformer.h.3.attn.c_attn.weight": "model-00001-of-00007.safetensors",
|
| 238 |
+
"transformer.h.3.attn.c_proj.bias": "model-00001-of-00007.safetensors",
|
| 239 |
+
"transformer.h.3.attn.c_proj.weight": "model-00001-of-00007.safetensors",
|
| 240 |
+
"transformer.h.3.ln_1.weight": "model-00001-of-00007.safetensors",
|
| 241 |
+
"transformer.h.3.ln_2.weight": "model-00001-of-00007.safetensors",
|
| 242 |
+
"transformer.h.3.mlp.c_fc.bias": "model-00001-of-00007.safetensors",
|
| 243 |
+
"transformer.h.3.mlp.c_fc.weight": "model-00001-of-00007.safetensors",
|
| 244 |
+
"transformer.h.3.mlp.c_proj.bias": "model-00001-of-00007.safetensors",
|
| 245 |
+
"transformer.h.3.mlp.c_proj.weight": "model-00001-of-00007.safetensors",
|
| 246 |
+
"transformer.h.30.attn.c_attn.bias": "model-00006-of-00007.safetensors",
|
| 247 |
+
"transformer.h.30.attn.c_attn.weight": "model-00006-of-00007.safetensors",
|
| 248 |
+
"transformer.h.30.attn.c_proj.bias": "model-00006-of-00007.safetensors",
|
| 249 |
+
"transformer.h.30.attn.c_proj.weight": "model-00006-of-00007.safetensors",
|
| 250 |
+
"transformer.h.30.ln_1.weight": "model-00006-of-00007.safetensors",
|
| 251 |
+
"transformer.h.30.ln_2.weight": "model-00006-of-00007.safetensors",
|
| 252 |
+
"transformer.h.30.mlp.c_fc.bias": "model-00006-of-00007.safetensors",
|
| 253 |
+
"transformer.h.30.mlp.c_fc.weight": "model-00006-of-00007.safetensors",
|
| 254 |
+
"transformer.h.30.mlp.c_proj.bias": "model-00006-of-00007.safetensors",
|
| 255 |
+
"transformer.h.30.mlp.c_proj.weight": "model-00006-of-00007.safetensors",
|
| 256 |
+
"transformer.h.31.attn.c_attn.bias": "model-00006-of-00007.safetensors",
|
| 257 |
+
"transformer.h.31.attn.c_attn.weight": "model-00006-of-00007.safetensors",
|
| 258 |
+
"transformer.h.31.attn.c_proj.bias": "model-00006-of-00007.safetensors",
|
| 259 |
+
"transformer.h.31.attn.c_proj.weight": "model-00006-of-00007.safetensors",
|
| 260 |
+
"transformer.h.31.ln_1.weight": "model-00006-of-00007.safetensors",
|
| 261 |
+
"transformer.h.31.ln_2.weight": "model-00006-of-00007.safetensors",
|
| 262 |
+
"transformer.h.31.mlp.c_fc.bias": "model-00006-of-00007.safetensors",
|
| 263 |
+
"transformer.h.31.mlp.c_fc.weight": "model-00006-of-00007.safetensors",
|
| 264 |
+
"transformer.h.31.mlp.c_proj.bias": "model-00006-of-00007.safetensors",
|
| 265 |
+
"transformer.h.31.mlp.c_proj.weight": "model-00006-of-00007.safetensors",
|
| 266 |
+
"transformer.h.32.attn.c_attn.bias": "model-00006-of-00007.safetensors",
|
| 267 |
+
"transformer.h.32.attn.c_attn.weight": "model-00006-of-00007.safetensors",
|
| 268 |
+
"transformer.h.32.attn.c_proj.bias": "model-00006-of-00007.safetensors",
|
| 269 |
+
"transformer.h.32.attn.c_proj.weight": "model-00006-of-00007.safetensors",
|
| 270 |
+
"transformer.h.32.ln_1.weight": "model-00006-of-00007.safetensors",
|
| 271 |
+
"transformer.h.32.ln_2.weight": "model-00006-of-00007.safetensors",
|
| 272 |
+
"transformer.h.32.mlp.c_fc.bias": "model-00007-of-00007.safetensors",
|
| 273 |
+
"transformer.h.32.mlp.c_fc.weight": "model-00007-of-00007.safetensors",
|
| 274 |
+
"transformer.h.32.mlp.c_proj.bias": "model-00007-of-00007.safetensors",
|
| 275 |
+
"transformer.h.32.mlp.c_proj.weight": "model-00007-of-00007.safetensors",
|
| 276 |
+
"transformer.h.33.attn.c_attn.bias": "model-00007-of-00007.safetensors",
|
| 277 |
+
"transformer.h.33.attn.c_attn.weight": "model-00007-of-00007.safetensors",
|
| 278 |
+
"transformer.h.33.attn.c_proj.bias": "model-00007-of-00007.safetensors",
|
| 279 |
+
"transformer.h.33.attn.c_proj.weight": "model-00007-of-00007.safetensors",
|
| 280 |
+
"transformer.h.33.ln_1.weight": "model-00007-of-00007.safetensors",
|
| 281 |
+
"transformer.h.33.ln_2.weight": "model-00007-of-00007.safetensors",
|
| 282 |
+
"transformer.h.33.mlp.c_fc.bias": "model-00007-of-00007.safetensors",
|
| 283 |
+
"transformer.h.33.mlp.c_fc.weight": "model-00007-of-00007.safetensors",
|
| 284 |
+
"transformer.h.33.mlp.c_proj.bias": "model-00007-of-00007.safetensors",
|
| 285 |
+
"transformer.h.33.mlp.c_proj.weight": "model-00007-of-00007.safetensors",
|
| 286 |
+
"transformer.h.34.attn.c_attn.bias": "model-00007-of-00007.safetensors",
|
| 287 |
+
"transformer.h.34.attn.c_attn.weight": "model-00007-of-00007.safetensors",
|
| 288 |
+
"transformer.h.34.attn.c_proj.bias": "model-00007-of-00007.safetensors",
|
| 289 |
+
"transformer.h.34.attn.c_proj.weight": "model-00007-of-00007.safetensors",
|
| 290 |
+
"transformer.h.34.ln_1.weight": "model-00007-of-00007.safetensors",
|
| 291 |
+
"transformer.h.34.ln_2.weight": "model-00007-of-00007.safetensors",
|
| 292 |
+
"transformer.h.34.mlp.c_fc.bias": "model-00007-of-00007.safetensors",
|
| 293 |
+
"transformer.h.34.mlp.c_fc.weight": "model-00007-of-00007.safetensors",
|
| 294 |
+
"transformer.h.34.mlp.c_proj.bias": "model-00007-of-00007.safetensors",
|
| 295 |
+
"transformer.h.34.mlp.c_proj.weight": "model-00007-of-00007.safetensors",
|
| 296 |
+
"transformer.h.35.attn.c_attn.bias": "model-00007-of-00007.safetensors",
|
| 297 |
+
"transformer.h.35.attn.c_attn.weight": "model-00007-of-00007.safetensors",
|
| 298 |
+
"transformer.h.35.attn.c_proj.bias": "model-00007-of-00007.safetensors",
|
| 299 |
+
"transformer.h.35.attn.c_proj.weight": "model-00007-of-00007.safetensors",
|
| 300 |
+
"transformer.h.35.ln_1.weight": "model-00007-of-00007.safetensors",
|
| 301 |
+
"transformer.h.35.ln_2.weight": "model-00007-of-00007.safetensors",
|
| 302 |
+
"transformer.h.35.mlp.c_fc.bias": "model-00007-of-00007.safetensors",
|
| 303 |
+
"transformer.h.35.mlp.c_fc.weight": "model-00007-of-00007.safetensors",
|
| 304 |
+
"transformer.h.35.mlp.c_proj.bias": "model-00007-of-00007.safetensors",
|
| 305 |
+
"transformer.h.35.mlp.c_proj.weight": "model-00007-of-00007.safetensors",
|
| 306 |
+
"transformer.h.4.attn.c_attn.bias": "model-00001-of-00007.safetensors",
|
| 307 |
+
"transformer.h.4.attn.c_attn.weight": "model-00001-of-00007.safetensors",
|
| 308 |
+
"transformer.h.4.attn.c_proj.bias": "model-00001-of-00007.safetensors",
|
| 309 |
+
"transformer.h.4.attn.c_proj.weight": "model-00001-of-00007.safetensors",
|
| 310 |
+
"transformer.h.4.ln_1.weight": "model-00001-of-00007.safetensors",
|
| 311 |
+
"transformer.h.4.ln_2.weight": "model-00001-of-00007.safetensors",
|
| 312 |
+
"transformer.h.4.mlp.c_fc.bias": "model-00001-of-00007.safetensors",
|
| 313 |
+
"transformer.h.4.mlp.c_fc.weight": "model-00001-of-00007.safetensors",
|
| 314 |
+
"transformer.h.4.mlp.c_proj.bias": "model-00002-of-00007.safetensors",
|
| 315 |
+
"transformer.h.4.mlp.c_proj.weight": "model-00002-of-00007.safetensors",
|
| 316 |
+
"transformer.h.5.attn.c_attn.bias": "model-00002-of-00007.safetensors",
|
| 317 |
+
"transformer.h.5.attn.c_attn.weight": "model-00002-of-00007.safetensors",
|
| 318 |
+
"transformer.h.5.attn.c_proj.bias": "model-00002-of-00007.safetensors",
|
| 319 |
+
"transformer.h.5.attn.c_proj.weight": "model-00002-of-00007.safetensors",
|
| 320 |
+
"transformer.h.5.ln_1.weight": "model-00002-of-00007.safetensors",
|
| 321 |
+
"transformer.h.5.ln_2.weight": "model-00002-of-00007.safetensors",
|
| 322 |
+
"transformer.h.5.mlp.c_fc.bias": "model-00002-of-00007.safetensors",
|
| 323 |
+
"transformer.h.5.mlp.c_fc.weight": "model-00002-of-00007.safetensors",
|
| 324 |
+
"transformer.h.5.mlp.c_proj.bias": "model-00002-of-00007.safetensors",
|
| 325 |
+
"transformer.h.5.mlp.c_proj.weight": "model-00002-of-00007.safetensors",
|
| 326 |
+
"transformer.h.6.attn.c_attn.bias": "model-00002-of-00007.safetensors",
|
| 327 |
+
"transformer.h.6.attn.c_attn.weight": "model-00002-of-00007.safetensors",
|
| 328 |
+
"transformer.h.6.attn.c_proj.bias": "model-00002-of-00007.safetensors",
|
| 329 |
+
"transformer.h.6.attn.c_proj.weight": "model-00002-of-00007.safetensors",
|
| 330 |
+
"transformer.h.6.ln_1.weight": "model-00002-of-00007.safetensors",
|
| 331 |
+
"transformer.h.6.ln_2.weight": "model-00002-of-00007.safetensors",
|
| 332 |
+
"transformer.h.6.mlp.c_fc.bias": "model-00002-of-00007.safetensors",
|
| 333 |
+
"transformer.h.6.mlp.c_fc.weight": "model-00002-of-00007.safetensors",
|
| 334 |
+
"transformer.h.6.mlp.c_proj.bias": "model-00002-of-00007.safetensors",
|
| 335 |
+
"transformer.h.6.mlp.c_proj.weight": "model-00002-of-00007.safetensors",
|
| 336 |
+
"transformer.h.7.attn.c_attn.bias": "model-00002-of-00007.safetensors",
|
| 337 |
+
"transformer.h.7.attn.c_attn.weight": "model-00002-of-00007.safetensors",
|
| 338 |
+
"transformer.h.7.attn.c_proj.bias": "model-00002-of-00007.safetensors",
|
| 339 |
+
"transformer.h.7.attn.c_proj.weight": "model-00002-of-00007.safetensors",
|
| 340 |
+
"transformer.h.7.ln_1.weight": "model-00002-of-00007.safetensors",
|
| 341 |
+
"transformer.h.7.ln_2.weight": "model-00002-of-00007.safetensors",
|
| 342 |
+
"transformer.h.7.mlp.c_fc.bias": "model-00002-of-00007.safetensors",
|
| 343 |
+
"transformer.h.7.mlp.c_fc.weight": "model-00002-of-00007.safetensors",
|
| 344 |
+
"transformer.h.7.mlp.c_proj.bias": "model-00002-of-00007.safetensors",
|
| 345 |
+
"transformer.h.7.mlp.c_proj.weight": "model-00002-of-00007.safetensors",
|
| 346 |
+
"transformer.h.8.attn.c_attn.bias": "model-00002-of-00007.safetensors",
|
| 347 |
+
"transformer.h.8.attn.c_attn.weight": "model-00002-of-00007.safetensors",
|
| 348 |
+
"transformer.h.8.attn.c_proj.bias": "model-00002-of-00007.safetensors",
|
| 349 |
+
"transformer.h.8.attn.c_proj.weight": "model-00002-of-00007.safetensors",
|
| 350 |
+
"transformer.h.8.ln_1.weight": "model-00002-of-00007.safetensors",
|
| 351 |
+
"transformer.h.8.ln_2.weight": "model-00002-of-00007.safetensors",
|
| 352 |
+
"transformer.h.8.mlp.c_fc.bias": "model-00002-of-00007.safetensors",
|
| 353 |
+
"transformer.h.8.mlp.c_fc.weight": "model-00002-of-00007.safetensors",
|
| 354 |
+
"transformer.h.8.mlp.c_proj.bias": "model-00002-of-00007.safetensors",
|
| 355 |
+
"transformer.h.8.mlp.c_proj.weight": "model-00002-of-00007.safetensors",
|
| 356 |
+
"transformer.h.9.attn.c_attn.bias": "model-00002-of-00007.safetensors",
|
| 357 |
+
"transformer.h.9.attn.c_attn.weight": "model-00002-of-00007.safetensors",
|
| 358 |
+
"transformer.h.9.attn.c_proj.bias": "model-00002-of-00007.safetensors",
|
| 359 |
+
"transformer.h.9.attn.c_proj.weight": "model-00002-of-00007.safetensors",
|
| 360 |
+
"transformer.h.9.ln_1.weight": "model-00002-of-00007.safetensors",
|
| 361 |
+
"transformer.h.9.ln_2.weight": "model-00002-of-00007.safetensors",
|
| 362 |
+
"transformer.h.9.mlp.c_fc.bias": "model-00002-of-00007.safetensors",
|
| 363 |
+
"transformer.h.9.mlp.c_fc.weight": "model-00002-of-00007.safetensors",
|
| 364 |
+
"transformer.h.9.mlp.c_proj.bias": "model-00002-of-00007.safetensors",
|
| 365 |
+
"transformer.h.9.mlp.c_proj.weight": "model-00002-of-00007.safetensors",
|
| 366 |
+
"transformer.ln_f.weight": "model-00007-of-00007.safetensors",
|
| 367 |
+
"transformer.wte.weight": "model-00001-of-00007.safetensors"
|
| 368 |
+
}
|
| 369 |
+
}
|
modeling_granite.py
ADDED
|
@@ -0,0 +1,1376 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import numbers
|
| 3 |
+
import warnings
|
| 4 |
+
from enum import Enum
|
| 5 |
+
from typing import Optional, Tuple, Union
|
| 6 |
+
|
| 7 |
+
import torch
|
| 8 |
+
import torch.nn as nn
|
| 9 |
+
import torch.nn.functional as F
|
| 10 |
+
from transformers import DynamicCache, PreTrainedModel
|
| 11 |
+
from transformers.activations import get_activation as get_base_activation
|
| 12 |
+
from transformers.modeling_outputs import BaseModelOutputWithPastAndCrossAttentions, CausalLMOutputWithCrossAttentions
|
| 13 |
+
from transformers.utils import is_flash_attn_2_available
|
| 14 |
+
|
| 15 |
+
from .configuration_granite import GraniteConfig
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
class PositionEmbeddingType(Enum):
|
| 19 |
+
learned_absolute = "learned_absolute"
|
| 20 |
+
alibi = "alibi"
|
| 21 |
+
rope = "rope"
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class AttentionHeadType(Enum):
|
| 25 |
+
mha = "mha"
|
| 26 |
+
mqa = "mqa"
|
| 27 |
+
gqa = "gqa"
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
if is_flash_attn_2_available():
|
| 31 |
+
from flash_attn.bert_padding import IndexFirstAxis, pad_input, unpad_input
|
| 32 |
+
from flash_attn.flash_attn_interface import flash_attn_varlen_func
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
# Copied from transformers.models.llama.modeling_llama._get_unpad_data
|
| 36 |
+
def get_unpad_data(attention_mask: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 37 |
+
seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
|
| 38 |
+
indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
|
| 39 |
+
max_seqlen_in_batch = seqlens_in_batch.max().item()
|
| 40 |
+
cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
|
| 41 |
+
return indices, cu_seqlens, max_seqlen_in_batch
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def repeat_key_value(x: torch.Tensor, num_heads: int, num_key_value_heads: int) -> torch.Tensor:
|
| 45 |
+
num_groups = num_heads // num_key_value_heads
|
| 46 |
+
|
| 47 |
+
# mha
|
| 48 |
+
if num_groups == 1:
|
| 49 |
+
return x
|
| 50 |
+
|
| 51 |
+
# mqa
|
| 52 |
+
if num_key_value_heads == 1:
|
| 53 |
+
return x.expand(-1, num_heads, -1, -1)
|
| 54 |
+
|
| 55 |
+
# gqa
|
| 56 |
+
return x.repeat_interleave(num_groups, dim=1)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
##################################################
|
| 60 |
+
# activation functions
|
| 61 |
+
|
| 62 |
+
|
| 63 |
+
_GLU_BASE_MAPPING = {
|
| 64 |
+
"geglu": "gelu",
|
| 65 |
+
"miglu": "mish",
|
| 66 |
+
"mishglu": "mish",
|
| 67 |
+
"swiglu": "swish",
|
| 68 |
+
}
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
class GLUActivation(nn.Module):
|
| 72 |
+
def __init__(self, base_activation: nn.Module) -> None:
|
| 73 |
+
super().__init__()
|
| 74 |
+
self.base_activation = base_activation
|
| 75 |
+
|
| 76 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
| 77 |
+
x = x.chunk(2, dim=-1)
|
| 78 |
+
return x[0] * self.base_activation(x[1])
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def is_glu(name: str) -> bool:
|
| 82 |
+
return name.endswith("glu")
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def get_activation_function(name: str) -> nn.Module:
|
| 86 |
+
if is_glu(name):
|
| 87 |
+
# for glu and sigmoid_glu, we directly return the pytorch's GLU
|
| 88 |
+
if name in ["glu", "sigmoid_glu"]:
|
| 89 |
+
activation_function = nn.modules.GLU()
|
| 90 |
+
else:
|
| 91 |
+
if name in _GLU_BASE_MAPPING:
|
| 92 |
+
name = _GLU_BASE_MAPPING[name]
|
| 93 |
+
elif name.endswith("_glu"):
|
| 94 |
+
name = name.rstrip("_glu")
|
| 95 |
+
else:
|
| 96 |
+
raise ValueError("invalid activation function")
|
| 97 |
+
|
| 98 |
+
base_activation = get_base_activation(name)
|
| 99 |
+
activation_function = GLUActivation(base_activation)
|
| 100 |
+
else:
|
| 101 |
+
activation_function = get_base_activation(name)
|
| 102 |
+
|
| 103 |
+
return activation_function
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
##################################################
|
| 107 |
+
# normalization functions
|
| 108 |
+
|
| 109 |
+
|
| 110 |
+
class RMSNorm(nn.Module):
|
| 111 |
+
def __init__(self, normalized_shape: int, eps: float = 1e-6) -> None:
|
| 112 |
+
super().__init__()
|
| 113 |
+
|
| 114 |
+
self.weight = nn.Parameter(torch.ones(normalized_shape))
|
| 115 |
+
self.eps = eps
|
| 116 |
+
|
| 117 |
+
if isinstance(normalized_shape, numbers.Integral):
|
| 118 |
+
normalized_shape = (normalized_shape,)
|
| 119 |
+
self.normalized_shape = normalized_shape
|
| 120 |
+
|
| 121 |
+
def forward(self, input: torch.Tensor) -> torch.Tensor:
|
| 122 |
+
input_dtype = input.dtype
|
| 123 |
+
|
| 124 |
+
input = input.to(torch.float32)
|
| 125 |
+
variance = input.pow(2).mean(-1, keepdim=True)
|
| 126 |
+
input = input * torch.rsqrt(variance + self.eps)
|
| 127 |
+
|
| 128 |
+
return self.weight * input.to(input_dtype)
|
| 129 |
+
|
| 130 |
+
def extra_repr(self) -> str:
|
| 131 |
+
return f"{self.normalized_shape}, eps={self.eps}"
|
| 132 |
+
|
| 133 |
+
def reset_parameters(self) -> None:
|
| 134 |
+
nn.init.ones_(self.weight)
|
| 135 |
+
|
| 136 |
+
|
| 137 |
+
_NORMALIZATION_FUNCTIONS = {
|
| 138 |
+
"layernorm": nn.LayerNorm,
|
| 139 |
+
"rmsnorm": RMSNorm,
|
| 140 |
+
}
|
| 141 |
+
|
| 142 |
+
|
| 143 |
+
def get_normalization_function(name: str, normalized_shape: int, eps: float = 1e-5) -> nn.Module:
|
| 144 |
+
if name in _NORMALIZATION_FUNCTIONS:
|
| 145 |
+
return _NORMALIZATION_FUNCTIONS[name](normalized_shape, eps=eps)
|
| 146 |
+
|
| 147 |
+
raise ValueError(f"unexpected `normalization_function` {name}")
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
##################################################
|
| 151 |
+
# attention modules
|
| 152 |
+
|
| 153 |
+
|
| 154 |
+
class GraniteAttention(nn.Module):
|
| 155 |
+
def __init__(self, config: GraniteConfig, causal: bool, layer_idx: Optional[int] = None) -> None:
|
| 156 |
+
super().__init__()
|
| 157 |
+
|
| 158 |
+
self.causal = causal
|
| 159 |
+
self.hidden_size = config.n_embd
|
| 160 |
+
self.num_heads = config.n_head
|
| 161 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 162 |
+
self.add_bias = config.add_bias
|
| 163 |
+
|
| 164 |
+
assert (
|
| 165 |
+
self.hidden_size % self.num_heads == 0
|
| 166 |
+
), f"`hidden_size` ({self.hidden_size}) must be divisible by `num_heads` ({self.num_heads})"
|
| 167 |
+
|
| 168 |
+
self.head_dim = self.hidden_size // self.num_heads
|
| 169 |
+
self.attention_head_type = AttentionHeadType(config.attention_head_type)
|
| 170 |
+
|
| 171 |
+
self.position_embedding_type = PositionEmbeddingType(config.position_embedding_type)
|
| 172 |
+
self.scale_attn_weights = config.scale_attn_weights
|
| 173 |
+
self.attention_multiplier = config.attention_multiplier
|
| 174 |
+
|
| 175 |
+
self.layer_idx = layer_idx
|
| 176 |
+
self.attention_softmax_in_fp32 = config.attention_softmax_in_fp32
|
| 177 |
+
self.scale_attention_softmax_in_fp32 = (
|
| 178 |
+
config.scale_attention_softmax_in_fp32 and config.attention_softmax_in_fp32
|
| 179 |
+
)
|
| 180 |
+
|
| 181 |
+
if self.attention_head_type == AttentionHeadType.mha:
|
| 182 |
+
if self.num_key_value_heads is None:
|
| 183 |
+
self.num_key_value_heads = self.num_heads
|
| 184 |
+
|
| 185 |
+
assert (
|
| 186 |
+
self.num_heads == self.num_key_value_heads
|
| 187 |
+
), f"{self.__class__.__name__} should have same number of heads for query, keys and values"
|
| 188 |
+
elif self.attention_head_type == AttentionHeadType.gqa:
|
| 189 |
+
assert (
|
| 190 |
+
self.num_key_value_heads is not None
|
| 191 |
+
), "`num_key_value_heads` needs to be specified with GroupedQueryAttention"
|
| 192 |
+
|
| 193 |
+
assert self.num_heads % self.num_key_value_heads == 0, (
|
| 194 |
+
f"`num_heads` ({self.num_heads}) should be a multiple of `num_key_value_heads` "
|
| 195 |
+
f"({self.num_key_value_heads})"
|
| 196 |
+
)
|
| 197 |
+
elif self.attention_head_type == AttentionHeadType.mqa:
|
| 198 |
+
if self.num_key_value_heads is None:
|
| 199 |
+
self.num_key_value_heads = 1
|
| 200 |
+
|
| 201 |
+
assert self.num_key_value_heads == 1, f"{self.__class__.__name__} should have 1 head for keys and values"
|
| 202 |
+
else:
|
| 203 |
+
raise ValueError(f"unexpected attention_head_type ({self.attention_head_type})")
|
| 204 |
+
|
| 205 |
+
# note that the actual layout is different for the output and depends on whether we are using MHA, MQA or GQA
|
| 206 |
+
# (self.hidden_size + 2 * self.num_key_value_heads * self.head_dim) is just the actual number output features
|
| 207 |
+
self.c_attn = nn.Linear(
|
| 208 |
+
self.hidden_size, self.hidden_size + 2 * self.num_key_value_heads * self.head_dim, bias=self.add_bias
|
| 209 |
+
)
|
| 210 |
+
self.c_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=self.add_bias)
|
| 211 |
+
|
| 212 |
+
self.attn_pdrop = config.attn_pdrop
|
| 213 |
+
self.resid_pdrop = config.resid_pdrop
|
| 214 |
+
|
| 215 |
+
self.attn_dropout = nn.Identity() if self.attn_pdrop == 0 else nn.Dropout(self.attn_pdrop)
|
| 216 |
+
self.resid_dropout = nn.Identity() if self.resid_pdrop == 0 else nn.Dropout(self.resid_pdrop)
|
| 217 |
+
|
| 218 |
+
def _prepare_qkv_for_forward(self, hidden_states: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 219 |
+
# ==========================================================================================
|
| 220 |
+
# hidden_states -> (batch_size, query_length, num_heads * head_dim)
|
| 221 |
+
# ==========================================================================================
|
| 222 |
+
|
| 223 |
+
# the output of following is a tuple if using MQA with tensor parallel
|
| 224 |
+
hidden_states = self.c_attn(hidden_states)
|
| 225 |
+
|
| 226 |
+
# ==========================================================================================
|
| 227 |
+
# hidden_states -> (batch_size, query_length, [num_heads + num_key_value_heads * 2] * head_dim)
|
| 228 |
+
# ==========================================================================================
|
| 229 |
+
|
| 230 |
+
# for MHA, we can get away with doing just 1 transpose which is not true for GQA
|
| 231 |
+
if self.attention_head_type == AttentionHeadType.mha:
|
| 232 |
+
query, key, value = self._prepare_qkv_for_forward_mha(hidden_states)
|
| 233 |
+
elif self.attention_head_type == AttentionHeadType.gqa:
|
| 234 |
+
query, key, value = self._prepare_qkv_for_forward_gqa(hidden_states)
|
| 235 |
+
elif self.attention_head_type == AttentionHeadType.mqa:
|
| 236 |
+
query, key, value = self._prepare_qkv_for_forward_mqa(hidden_states)
|
| 237 |
+
else:
|
| 238 |
+
raise ValueError(f"unexpected attention_head_type ({self.attention_head_type})")
|
| 239 |
+
|
| 240 |
+
# ==========================================================================================
|
| 241 |
+
# query -> (batch_size, num_heads, query_length, head_dim)
|
| 242 |
+
# key -> (batch_size, num_key_value_heads, query_length, head_dim)
|
| 243 |
+
# value -> (batch_size, num_key_value_heads, query_length, head_dim)
|
| 244 |
+
# ==========================================================================================
|
| 245 |
+
|
| 246 |
+
return query, key, value
|
| 247 |
+
|
| 248 |
+
def _prepare_qkv_for_forward_mha(
|
| 249 |
+
self, hidden_states: torch.Tensor
|
| 250 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 251 |
+
batch_size, query_length = hidden_states.shape[:-1]
|
| 252 |
+
|
| 253 |
+
hidden_states = hidden_states.view(batch_size, query_length, self.num_heads, -1)
|
| 254 |
+
hidden_states = hidden_states.transpose(1, 2)
|
| 255 |
+
|
| 256 |
+
query, key, value = hidden_states.chunk(3, dim=-1)
|
| 257 |
+
|
| 258 |
+
return query, key, value
|
| 259 |
+
|
| 260 |
+
def _prepare_qkv_for_forward_gqa(
|
| 261 |
+
self, hidden_states: torch.Tensor
|
| 262 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 263 |
+
batch_size, query_length = hidden_states.shape[:-1]
|
| 264 |
+
|
| 265 |
+
hidden_states = hidden_states.view(batch_size, query_length, self.num_key_value_heads, -1)
|
| 266 |
+
|
| 267 |
+
query, key, value = hidden_states.split(
|
| 268 |
+
((self.num_heads // self.num_key_value_heads) * self.head_dim, self.head_dim, self.head_dim), dim=-1
|
| 269 |
+
)
|
| 270 |
+
|
| 271 |
+
# this needs to be a reshape instead of view sadly
|
| 272 |
+
query = query.reshape(batch_size, query_length, -1, self.head_dim)
|
| 273 |
+
|
| 274 |
+
query = query.transpose(1, 2)
|
| 275 |
+
key = key.transpose(1, 2)
|
| 276 |
+
value = value.transpose(1, 2)
|
| 277 |
+
|
| 278 |
+
return query, key, value
|
| 279 |
+
|
| 280 |
+
def _prepare_qkv_for_forward_mqa(
|
| 281 |
+
self, hidden_states: torch.Tensor
|
| 282 |
+
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
| 283 |
+
batch_size, query_length = hidden_states.shape[:-1]
|
| 284 |
+
|
| 285 |
+
query, key, value = hidden_states.split((self.hidden_size, self.head_dim, self.head_dim), dim=-1)
|
| 286 |
+
|
| 287 |
+
query = query.view(batch_size, query_length, self.num_heads, -1)
|
| 288 |
+
|
| 289 |
+
query = query.transpose(1, 2)
|
| 290 |
+
key = key.unsqueeze(1)
|
| 291 |
+
value = value.unsqueeze(1)
|
| 292 |
+
|
| 293 |
+
return query, key, value
|
| 294 |
+
|
| 295 |
+
def forward(
|
| 296 |
+
self,
|
| 297 |
+
hidden_states: torch.Tensor,
|
| 298 |
+
past_key_values: Optional[DynamicCache] = None,
|
| 299 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 300 |
+
rope_cos_sin: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 301 |
+
) -> torch.Tensor:
|
| 302 |
+
# ==========================================================================================
|
| 303 |
+
# hidden_states -> (batch_size, query_length, num_heads * head_dim)
|
| 304 |
+
# ==========================================================================================
|
| 305 |
+
|
| 306 |
+
query, key, value = self._prepare_qkv_for_forward(hidden_states)
|
| 307 |
+
|
| 308 |
+
# ==========================================================================================
|
| 309 |
+
# query -> (batch_size, num_heads, query_length, head_dim)
|
| 310 |
+
# key -> (batch_size, num_key_value_heads, query_length, head_dim)
|
| 311 |
+
# value -> (batch_size, num_key_value_heads, query_length, head_dim)
|
| 312 |
+
# ==========================================================================================
|
| 313 |
+
|
| 314 |
+
if self.position_embedding_type == PositionEmbeddingType.rope:
|
| 315 |
+
query = apply_rotary_pos_emb(query, rope_cos_sin)
|
| 316 |
+
key = apply_rotary_pos_emb(key, rope_cos_sin)
|
| 317 |
+
|
| 318 |
+
if past_key_values is not None:
|
| 319 |
+
key, value = past_key_values.update(key, value, self.layer_idx)
|
| 320 |
+
|
| 321 |
+
# ==========================================================================================
|
| 322 |
+
# query -> (batch_size, num_heads, query_length, head_dim)
|
| 323 |
+
# key -> (batch_size, num_key_value_heads, key_length, head_dim)
|
| 324 |
+
# value -> (batch_size, num_key_value_heads, key_length, head_dim)
|
| 325 |
+
# ==========================================================================================
|
| 326 |
+
|
| 327 |
+
key = key.transpose(-1, -2)
|
| 328 |
+
|
| 329 |
+
dtype = query.dtype
|
| 330 |
+
softmax_dtype = torch.float32 if self.attention_softmax_in_fp32 else dtype
|
| 331 |
+
|
| 332 |
+
if self.scale_attn_weights:
|
| 333 |
+
if self.attention_multiplier is None:
|
| 334 |
+
scale_factor = 1 / self.head_dim**0.5
|
| 335 |
+
else:
|
| 336 |
+
scale_factor = self.attention_multiplier
|
| 337 |
+
else:
|
| 338 |
+
scale_factor = 1
|
| 339 |
+
|
| 340 |
+
# ==========================================================================================
|
| 341 |
+
# query -> (batch_size, num_heads, query_length, head_dim)
|
| 342 |
+
# key -> (batch_size, num_key_value_heads, head_dim, key_length)
|
| 343 |
+
# value -> (batch_size, num_key_value_heads, key_length, head_dim)
|
| 344 |
+
# ==========================================================================================
|
| 345 |
+
|
| 346 |
+
batch_size = query.shape[0]
|
| 347 |
+
query_length = query.shape[2]
|
| 348 |
+
key_length = key.shape[-1]
|
| 349 |
+
|
| 350 |
+
key = repeat_key_value(key, self.num_heads, self.num_key_value_heads)
|
| 351 |
+
value = repeat_key_value(value, self.num_heads, self.num_key_value_heads)
|
| 352 |
+
|
| 353 |
+
# Always copies
|
| 354 |
+
query = query.reshape(batch_size * self.num_heads, query_length, self.head_dim)
|
| 355 |
+
# No copy when layer_past is provided.
|
| 356 |
+
key = key.reshape(batch_size * self.num_heads, self.head_dim, key_length)
|
| 357 |
+
|
| 358 |
+
# ==========================================================================================
|
| 359 |
+
# query -> (batch_size * num_heads, query_length, head_dim)
|
| 360 |
+
# key -> (batch_size * num_heads, head_dim, key_length)
|
| 361 |
+
# value -> (batch_size, num_heads, key_length, head_dim)
|
| 362 |
+
# ==========================================================================================
|
| 363 |
+
|
| 364 |
+
attn_weights = torch.empty(
|
| 365 |
+
(batch_size * self.num_heads, query_length, key_length), device=query.device, dtype=query.dtype
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
attn_weights = torch.baddbmm(attn_weights, query, key, beta=0, alpha=scale_factor).view(
|
| 369 |
+
batch_size, self.num_heads, query_length, key_length
|
| 370 |
+
)
|
| 371 |
+
|
| 372 |
+
# ==========================================================================================
|
| 373 |
+
# attn_weights -> (batch_size, num_heads, query_length, key_length)
|
| 374 |
+
# ==========================================================================================
|
| 375 |
+
|
| 376 |
+
attn_weights = attn_weights.to(softmax_dtype)
|
| 377 |
+
|
| 378 |
+
if attention_mask is not None:
|
| 379 |
+
attn_weights = attn_weights + attention_mask
|
| 380 |
+
|
| 381 |
+
attn_weights = F.softmax(attn_weights, dim=-1).to(dtype)
|
| 382 |
+
|
| 383 |
+
attn_weights = self.attn_dropout(attn_weights)
|
| 384 |
+
|
| 385 |
+
# ==========================================================================================
|
| 386 |
+
# value -> (batch_size, num_heads, key_length, head_dim)
|
| 387 |
+
# attn_weights -> (batch_size, num_heads, query_length, key_length)
|
| 388 |
+
# ==========================================================================================
|
| 389 |
+
|
| 390 |
+
attn_output = torch.matmul(attn_weights, value)
|
| 391 |
+
|
| 392 |
+
# ==========================================================================================
|
| 393 |
+
# attn_output -> (batch_size, num_heads, query_length, head_dim)
|
| 394 |
+
# ==========================================================================================
|
| 395 |
+
|
| 396 |
+
attn_output = attn_output.transpose(1, 2)
|
| 397 |
+
attn_output = attn_output.reshape(batch_size, -1, self.num_heads * self.head_dim)
|
| 398 |
+
|
| 399 |
+
# ==========================================================================================
|
| 400 |
+
# attn_output -> (batch_size, query_length, num_heads * head_dim)
|
| 401 |
+
# ==========================================================================================
|
| 402 |
+
|
| 403 |
+
attn_output = self.c_proj(attn_output)
|
| 404 |
+
attn_output = self.resid_dropout(attn_output)
|
| 405 |
+
|
| 406 |
+
return attn_output
|
| 407 |
+
|
| 408 |
+
|
| 409 |
+
class GraniteSDPA(GraniteAttention):
|
| 410 |
+
def forward(
|
| 411 |
+
self,
|
| 412 |
+
hidden_states: torch.Tensor,
|
| 413 |
+
past_key_values: Optional[DynamicCache] = None,
|
| 414 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 415 |
+
rope_cos_sin: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 416 |
+
) -> torch.Tensor:
|
| 417 |
+
# ==========================================================================================
|
| 418 |
+
# hidden_states -> (batch_size, query_length, num_heads * head_dim)
|
| 419 |
+
# ==========================================================================================
|
| 420 |
+
|
| 421 |
+
query, key, value = self._prepare_qkv_for_forward(hidden_states)
|
| 422 |
+
|
| 423 |
+
# ==========================================================================================
|
| 424 |
+
# query -> (batch_size, num_heads, query_length, head_dim)
|
| 425 |
+
# key -> (batch_size, num_key_value_heads, query_length, head_dim)
|
| 426 |
+
# value -> (batch_size, num_key_value_heads, query_length, head_dim)
|
| 427 |
+
# ==========================================================================================
|
| 428 |
+
|
| 429 |
+
if self.position_embedding_type == PositionEmbeddingType.rope:
|
| 430 |
+
query = apply_rotary_pos_emb(query, rope_cos_sin)
|
| 431 |
+
key = apply_rotary_pos_emb(key, rope_cos_sin)
|
| 432 |
+
|
| 433 |
+
if past_key_values is not None:
|
| 434 |
+
key, value = past_key_values.update(key, value, self.layer_idx)
|
| 435 |
+
|
| 436 |
+
# ==========================================================================================
|
| 437 |
+
# query -> (batch_size, num_heads, query_length, head_dim)
|
| 438 |
+
# key -> (batch_size, num_key_value_heads, key_length, head_dim)
|
| 439 |
+
# value -> (batch_size, num_key_value_heads, key_length, head_dim)
|
| 440 |
+
# ==========================================================================================
|
| 441 |
+
|
| 442 |
+
key = repeat_key_value(key, self.num_heads, self.num_key_value_heads)
|
| 443 |
+
value = repeat_key_value(value, self.num_heads, self.num_key_value_heads)
|
| 444 |
+
|
| 445 |
+
# ==========================================================================================
|
| 446 |
+
# query -> (batch_size, num_heads, query_length, head_dim)
|
| 447 |
+
# key -> (batch_size, num_heads, key_length, head_dim)
|
| 448 |
+
# value -> (batch_size, num_heads, key_length, head_dim)
|
| 449 |
+
# ==========================================================================================
|
| 450 |
+
|
| 451 |
+
attn_output = F.scaled_dot_product_attention(
|
| 452 |
+
query,
|
| 453 |
+
key,
|
| 454 |
+
value,
|
| 455 |
+
attn_mask=attention_mask,
|
| 456 |
+
dropout_p=self.attn_pdrop if self.training else 0,
|
| 457 |
+
is_causal=self.causal if attention_mask is None else False,
|
| 458 |
+
scale=self.attention_multiplier if self.scale_attn_weights else 1,
|
| 459 |
+
)
|
| 460 |
+
|
| 461 |
+
# ==========================================================================================
|
| 462 |
+
# attn_output -> (batch_size, num_heads, query_length, head_dim)
|
| 463 |
+
# ==========================================================================================
|
| 464 |
+
|
| 465 |
+
batch_size = attn_output.shape[0]
|
| 466 |
+
attn_output = attn_output.transpose(1, 2)
|
| 467 |
+
attn_output = attn_output.reshape(batch_size, -1, self.num_heads * self.head_dim)
|
| 468 |
+
|
| 469 |
+
# ==========================================================================================
|
| 470 |
+
# attn_output -> (batch_size, query_length, num_heads * head_dim)
|
| 471 |
+
# ==========================================================================================
|
| 472 |
+
|
| 473 |
+
attn_output = self.c_proj(attn_output)
|
| 474 |
+
attn_output = self.resid_dropout(attn_output)
|
| 475 |
+
|
| 476 |
+
return attn_output
|
| 477 |
+
|
| 478 |
+
|
| 479 |
+
class GraniteFlashAttention2(GraniteAttention):
|
| 480 |
+
def forward(
|
| 481 |
+
self,
|
| 482 |
+
hidden_states: torch.Tensor,
|
| 483 |
+
past_key_values: Optional[DynamicCache] = None,
|
| 484 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 485 |
+
rope_cos_sin: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 486 |
+
) -> torch.Tensor:
|
| 487 |
+
# ==========================================================================================
|
| 488 |
+
# hidden_states -> (batch_size, query_length, num_heads * head_dim)
|
| 489 |
+
# ==========================================================================================
|
| 490 |
+
|
| 491 |
+
query, key, value = self._prepare_qkv_for_forward(hidden_states)
|
| 492 |
+
|
| 493 |
+
# ==========================================================================================
|
| 494 |
+
# query -> (batch_size, num_heads, query_length, head_dim)
|
| 495 |
+
# key -> (batch_size, num_key_value_heads, query_length, head_dim)
|
| 496 |
+
# value -> (batch_size, num_key_value_heads, query_length, head_dim)
|
| 497 |
+
# ==========================================================================================
|
| 498 |
+
|
| 499 |
+
if self.position_embedding_type == PositionEmbeddingType.rope:
|
| 500 |
+
query = apply_rotary_pos_emb(query, rope_cos_sin)
|
| 501 |
+
key = apply_rotary_pos_emb(key, rope_cos_sin)
|
| 502 |
+
|
| 503 |
+
if past_key_values is not None:
|
| 504 |
+
key, value = past_key_values.update(key, value, self.layer_idx)
|
| 505 |
+
|
| 506 |
+
# ==========================================================================================
|
| 507 |
+
# query -> (batch_size, num_heads, query_length, head_dim)
|
| 508 |
+
# key -> (batch_size, num_key_value_heads, key_length, head_dim)
|
| 509 |
+
# value -> (batch_size, num_key_value_heads, key_length, head_dim)
|
| 510 |
+
# ==========================================================================================
|
| 511 |
+
|
| 512 |
+
# TODO avoid this extra transpose
|
| 513 |
+
query = query.transpose(1, 2)
|
| 514 |
+
if self.attention_head_type == AttentionHeadType.mqa:
|
| 515 |
+
key = key.squeeze(1).unsqueeze(2)
|
| 516 |
+
value = value.squeeze(1).unsqueeze(2)
|
| 517 |
+
else:
|
| 518 |
+
key = key.transpose(1, 2)
|
| 519 |
+
value = value.transpose(1, 2)
|
| 520 |
+
|
| 521 |
+
# ==========================================================================================
|
| 522 |
+
# query -> (batch_size, query_length, num_heads, head_dim)
|
| 523 |
+
# key -> (batch_size, key_length, num_heads, head_dim)
|
| 524 |
+
# value -> (batch_size, key_length, num_heads, head_dim)
|
| 525 |
+
# ==========================================================================================
|
| 526 |
+
|
| 527 |
+
batch_size, query_length = query.shape[:2]
|
| 528 |
+
key_length = key.shape[1]
|
| 529 |
+
indices_k, cu_seqlens_k, max_seqlen_k = get_unpad_data(attention_mask)
|
| 530 |
+
|
| 531 |
+
key = IndexFirstAxis.apply(
|
| 532 |
+
key.reshape(batch_size * key_length, self.num_key_value_heads, self.head_dim), indices_k
|
| 533 |
+
)
|
| 534 |
+
value = IndexFirstAxis.apply(
|
| 535 |
+
value.reshape(batch_size * key_length, self.num_key_value_heads, self.head_dim), indices_k
|
| 536 |
+
)
|
| 537 |
+
|
| 538 |
+
if query_length == key_length:
|
| 539 |
+
query = IndexFirstAxis.apply(
|
| 540 |
+
query.reshape(batch_size * key_length, self.num_heads, self.head_dim), indices_k
|
| 541 |
+
)
|
| 542 |
+
cu_seqlens_q = cu_seqlens_k
|
| 543 |
+
max_seqlen_q = max_seqlen_k
|
| 544 |
+
indices_q = indices_k
|
| 545 |
+
elif query_length == 1:
|
| 546 |
+
max_seqlen_q = 1
|
| 547 |
+
cu_seqlens_q = torch.arange(
|
| 548 |
+
batch_size + 1, dtype=torch.int32, device=query.device
|
| 549 |
+
) # There is a memcpy here, that is very bad.
|
| 550 |
+
indices_q = cu_seqlens_q[:-1]
|
| 551 |
+
query = query.squeeze(1)
|
| 552 |
+
else:
|
| 553 |
+
# The -q_len: slice assumes left padding.
|
| 554 |
+
attention_mask = attention_mask[:, -query_length:]
|
| 555 |
+
query, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(query, attention_mask)
|
| 556 |
+
|
| 557 |
+
# ==========================================================================================
|
| 558 |
+
# query -> (total_q, num_heads, head_dim)
|
| 559 |
+
# key -> (total_q, num_heads, head_dim)
|
| 560 |
+
# value -> (total_q, num_heads, head_dim)
|
| 561 |
+
# ==========================================================================================
|
| 562 |
+
|
| 563 |
+
attn_output = flash_attn_varlen_func(
|
| 564 |
+
query,
|
| 565 |
+
key,
|
| 566 |
+
value,
|
| 567 |
+
cu_seqlens_q=cu_seqlens_q,
|
| 568 |
+
cu_seqlens_k=cu_seqlens_k,
|
| 569 |
+
max_seqlen_q=max_seqlen_q,
|
| 570 |
+
max_seqlen_k=max_seqlen_k,
|
| 571 |
+
dropout_p=self.attn_pdrop if self.training else 0,
|
| 572 |
+
softmax_scale=self.attention_multiplier if self.scale_attn_weights else 1,
|
| 573 |
+
causal=self.causal,
|
| 574 |
+
)
|
| 575 |
+
|
| 576 |
+
# ==========================================================================================
|
| 577 |
+
# attn_output -> (total_q, num_heads, head_dim)
|
| 578 |
+
# ==========================================================================================
|
| 579 |
+
|
| 580 |
+
attn_output = pad_input(attn_output, indices_q, batch_size, query_length)
|
| 581 |
+
attn_output = attn_output.view(batch_size, query_length, -1)
|
| 582 |
+
|
| 583 |
+
# ==========================================================================================
|
| 584 |
+
# attn_output -> (batch_size, query_length, num_heads * head_dim)
|
| 585 |
+
# ==========================================================================================
|
| 586 |
+
|
| 587 |
+
attn_output = self.c_proj(attn_output)
|
| 588 |
+
attn_output = self.resid_dropout(attn_output)
|
| 589 |
+
|
| 590 |
+
return attn_output
|
| 591 |
+
|
| 592 |
+
|
| 593 |
+
_ATTENTION_MODULES = {
|
| 594 |
+
"eager": GraniteAttention,
|
| 595 |
+
"sdpa": GraniteSDPA,
|
| 596 |
+
"flash_attention_2": GraniteFlashAttention2,
|
| 597 |
+
}
|
| 598 |
+
|
| 599 |
+
|
| 600 |
+
def get_attention_module(
|
| 601 |
+
config: GraniteConfig, causal: bool, attention_implementation: str, layer_idx: int
|
| 602 |
+
) -> GraniteAttention:
|
| 603 |
+
if attention_implementation in _ATTENTION_MODULES:
|
| 604 |
+
return _ATTENTION_MODULES[attention_implementation](config, causal=causal, layer_idx=layer_idx)
|
| 605 |
+
raise ValueError(f"unexpected `attention_implementation` {attention_implementation}")
|
| 606 |
+
|
| 607 |
+
|
| 608 |
+
##################################################
|
| 609 |
+
# position embeddings
|
| 610 |
+
|
| 611 |
+
|
| 612 |
+
class Alibi(nn.Module):
|
| 613 |
+
def __init__(self, num_heads: int) -> None:
|
| 614 |
+
super().__init__()
|
| 615 |
+
self.num_heads = num_heads
|
| 616 |
+
|
| 617 |
+
self.reset_parameters()
|
| 618 |
+
|
| 619 |
+
def forward(
|
| 620 |
+
self, attention_mask: torch.Tensor, batch_size: int, key_length: int, device: torch.device, dtype: torch.dtype
|
| 621 |
+
) -> torch.Tensor:
|
| 622 |
+
"""
|
| 623 |
+
Link to paper: https://arxiv.org/abs/2108.12409 Alibi tensor is not causal as the original paper mentions, it
|
| 624 |
+
relies on a translation invariance of softmax for quick implementation: with l being a tensor, and a fixed value
|
| 625 |
+
`softmax(l+a) = softmax(l)`. Based on
|
| 626 |
+
https://github.com/ofirpress/attention_with_linear_biases/blob/a35aaca144e0eb6b789dfcb46784c4b8e31b7983/fairseq/models/transformer.py#L742
|
| 627 |
+
TODO @thomasw21 this doesn't work as nicely due to the masking strategy, and so masking varies slightly.
|
| 628 |
+
|
| 629 |
+
Args:
|
| 630 |
+
attention_mask (torch.Tensor): attention_mask tensor of shape (`batch_size`, `key_length`)
|
| 631 |
+
num_heads (int): `num_heads` for the model
|
| 632 |
+
batch_size (int): `batch_size`
|
| 633 |
+
key_length (int): `key_length`
|
| 634 |
+
device (torch.device): device for the tensors
|
| 635 |
+
dtype (torch.dtype): dtype to use for the tensors
|
| 636 |
+
|
| 637 |
+
Returns:
|
| 638 |
+
torch.Tensor: alibi tensor of shape (`batch_size`, `num_heads`, `key_length`)
|
| 639 |
+
"""
|
| 640 |
+
|
| 641 |
+
# Note: alibi will added to the attention bias that will be applied to the query, key product of attention
|
| 642 |
+
# => therefore alibi will have to be of shape (batch_size, num_heads, query_length, key_length)
|
| 643 |
+
# => here we set (batch_size=1, num_heads=num_heads, query_length=1, key_length=max_length)
|
| 644 |
+
# => the query_length dimension will then be broadcasted correctly
|
| 645 |
+
# This is more or less identical to T5's relative position bias:
|
| 646 |
+
# https://github.com/huggingface/transformers/blob/f681437203baa7671de3174b0fa583c349d9d5e1/src/transformers/models/t5/modeling_t5.py#L527
|
| 647 |
+
if attention_mask is None:
|
| 648 |
+
arange_tensor = (
|
| 649 |
+
torch.arange(key_length, device=device).unsqueeze(0).unsqueeze(0).expand(batch_size, -1, -1)
|
| 650 |
+
)
|
| 651 |
+
else:
|
| 652 |
+
arange_tensor = (attention_mask.cumsum(dim=-1) - 1).masked_fill_(attention_mask == 0, 0).unsqueeze(1)
|
| 653 |
+
|
| 654 |
+
alibi = self.slopes.unsqueeze(1) * arange_tensor
|
| 655 |
+
return alibi.to(dtype)
|
| 656 |
+
|
| 657 |
+
def reset_parameters(self) -> None:
|
| 658 |
+
closest_power_of_2 = 2 ** math.floor(math.log2(self.num_heads))
|
| 659 |
+
base = torch.tensor(2 ** (-(2 ** -(math.log2(closest_power_of_2) - 3))), dtype=torch.float32)
|
| 660 |
+
powers = torch.arange(1, 1 + closest_power_of_2, dtype=torch.int32)
|
| 661 |
+
slopes = torch.pow(base, powers)
|
| 662 |
+
|
| 663 |
+
if closest_power_of_2 != self.num_heads:
|
| 664 |
+
extra_base = torch.tensor(2 ** (-(2 ** -(math.log2(2 * closest_power_of_2) - 3))), dtype=torch.float32)
|
| 665 |
+
num_remaining_heads = min(closest_power_of_2, self.num_heads - closest_power_of_2)
|
| 666 |
+
extra_powers = torch.arange(1, 1 + 2 * num_remaining_heads, 2, dtype=torch.int32)
|
| 667 |
+
slopes = torch.cat([slopes, torch.pow(extra_base, extra_powers)], dim=0)
|
| 668 |
+
|
| 669 |
+
self.register_buffer("slopes", slopes, persistent=False)
|
| 670 |
+
|
| 671 |
+
|
| 672 |
+
class RoPE(nn.Module):
|
| 673 |
+
def __init__(
|
| 674 |
+
self,
|
| 675 |
+
head_dim: int,
|
| 676 |
+
max_position_embeddings: int = 2048,
|
| 677 |
+
base: int = 10000,
|
| 678 |
+
) -> None:
|
| 679 |
+
super().__init__()
|
| 680 |
+
|
| 681 |
+
self.head_dim = head_dim
|
| 682 |
+
self.max_position_embeddings = max_position_embeddings
|
| 683 |
+
self.base = base
|
| 684 |
+
self.mscale = 1
|
| 685 |
+
|
| 686 |
+
self.reset_parameters()
|
| 687 |
+
|
| 688 |
+
def forward(self, seq_len: int, dtype: torch.dtype, device: torch.device) -> Tuple[torch.Tensor, torch.Tensor]:
|
| 689 |
+
if seq_len > self.max_seq_len_cached:
|
| 690 |
+
self._set_cos_sin_cache(seq_len=seq_len, device=device, dtype=dtype)
|
| 691 |
+
|
| 692 |
+
cos = self.cos_cached[:seq_len].to(dtype)
|
| 693 |
+
sin = self.sin_cached[:seq_len].to(dtype)
|
| 694 |
+
|
| 695 |
+
return cos, sin
|
| 696 |
+
|
| 697 |
+
def reset_parameters(self) -> None:
|
| 698 |
+
inv_freq = 1.0 / (self.base ** (torch.arange(0, self.head_dim, 2).float() / self.head_dim))
|
| 699 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
| 700 |
+
|
| 701 |
+
# Build here to make `torch.jit.trace` work.
|
| 702 |
+
self._set_cos_sin_cache(
|
| 703 |
+
seq_len=self.max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
|
| 704 |
+
)
|
| 705 |
+
|
| 706 |
+
@torch.no_grad()
|
| 707 |
+
def _set_cos_sin_cache(self, seq_len: int, device: torch.device, dtype: torch.dtype) -> None:
|
| 708 |
+
self.max_seq_len_cached = seq_len
|
| 709 |
+
t = torch.arange(self.max_seq_len_cached, device=device, dtype=self.inv_freq.dtype)
|
| 710 |
+
|
| 711 |
+
freqs = torch.outer(t, self.inv_freq)
|
| 712 |
+
# Different from paper, but it uses a different permutation in order to obtain the same calculation
|
| 713 |
+
emb = torch.cat((freqs, freqs), dim=-1)
|
| 714 |
+
|
| 715 |
+
self.register_buffer("cos_cached", (emb.cos() * self.mscale).to(dtype), persistent=False)
|
| 716 |
+
self.register_buffer("sin_cached", (emb.sin() * self.mscale).to(dtype), persistent=False)
|
| 717 |
+
|
| 718 |
+
|
| 719 |
+
def apply_rotary_pos_emb(x: torch.Tensor, cos_sin: Tuple[torch.Tensor, torch.Tensor]) -> torch.Tensor:
|
| 720 |
+
cos, sin = cos_sin
|
| 721 |
+
x = (x * cos) + (_rotate_half(x) * sin)
|
| 722 |
+
return x
|
| 723 |
+
|
| 724 |
+
|
| 725 |
+
def _rotate_half(x: torch.Tensor) -> torch.Tensor:
|
| 726 |
+
x1, x2 = torch.chunk(x, 2, dim=-1)
|
| 727 |
+
return torch.cat((-x2, x1), dim=-1)
|
| 728 |
+
|
| 729 |
+
|
| 730 |
+
##################################################
|
| 731 |
+
# MLP
|
| 732 |
+
|
| 733 |
+
|
| 734 |
+
class GraniteMLP(nn.Module):
|
| 735 |
+
def __init__(self, config: GraniteConfig) -> None:
|
| 736 |
+
super().__init__()
|
| 737 |
+
|
| 738 |
+
hidden_size = config.n_embd
|
| 739 |
+
intermediate_size = config.n_inner
|
| 740 |
+
activation_function = config.activation_function
|
| 741 |
+
add_bias = config.add_bias
|
| 742 |
+
residual_dropout = config.resid_pdrop
|
| 743 |
+
|
| 744 |
+
self.c_fc = nn.Linear(
|
| 745 |
+
hidden_size,
|
| 746 |
+
2 * intermediate_size if is_glu(activation_function) else intermediate_size,
|
| 747 |
+
bias=add_bias,
|
| 748 |
+
)
|
| 749 |
+
self.act = get_activation_function(activation_function)
|
| 750 |
+
self.c_proj = nn.Linear(intermediate_size, hidden_size, bias=add_bias)
|
| 751 |
+
self.dropout = nn.Identity() if residual_dropout == 0 else nn.Dropout(residual_dropout)
|
| 752 |
+
|
| 753 |
+
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
| 754 |
+
hidden_states = self.c_fc(hidden_states)
|
| 755 |
+
hidden_states = self.act(hidden_states)
|
| 756 |
+
hidden_states = self.c_proj(hidden_states)
|
| 757 |
+
hidden_states = self.dropout(hidden_states)
|
| 758 |
+
return hidden_states
|
| 759 |
+
|
| 760 |
+
|
| 761 |
+
##################################################
|
| 762 |
+
# transformer layer
|
| 763 |
+
|
| 764 |
+
|
| 765 |
+
class GraniteBlock(nn.Module):
|
| 766 |
+
def __init__(
|
| 767 |
+
self,
|
| 768 |
+
config: GraniteConfig,
|
| 769 |
+
attention_implementation: str,
|
| 770 |
+
layer_idx: Optional[int] = None,
|
| 771 |
+
) -> None:
|
| 772 |
+
super().__init__()
|
| 773 |
+
|
| 774 |
+
hidden_size = config.hidden_size
|
| 775 |
+
self.inner_dim = config.n_inner
|
| 776 |
+
self.layer_idx = layer_idx
|
| 777 |
+
|
| 778 |
+
self.ln_1 = get_normalization_function(
|
| 779 |
+
config.normalization_function,
|
| 780 |
+
hidden_size,
|
| 781 |
+
eps=config.layer_norm_epsilon,
|
| 782 |
+
)
|
| 783 |
+
self.attn = get_attention_module(config, True, attention_implementation, layer_idx)
|
| 784 |
+
self.ln_2 = get_normalization_function(
|
| 785 |
+
config.normalization_function,
|
| 786 |
+
hidden_size,
|
| 787 |
+
eps=config.layer_norm_epsilon,
|
| 788 |
+
)
|
| 789 |
+
self.mlp = GraniteMLP(config)
|
| 790 |
+
|
| 791 |
+
def forward(
|
| 792 |
+
self,
|
| 793 |
+
hidden_states: torch.Tensor,
|
| 794 |
+
past_key_values: Optional[DynamicCache] = None,
|
| 795 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 796 |
+
rope_cos_sin: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
|
| 797 |
+
) -> torch.Tensor:
|
| 798 |
+
residual = hidden_states
|
| 799 |
+
hidden_states = self.ln_1(hidden_states)
|
| 800 |
+
|
| 801 |
+
attn_output = self.attn(
|
| 802 |
+
hidden_states,
|
| 803 |
+
past_key_values=past_key_values,
|
| 804 |
+
attention_mask=attention_mask,
|
| 805 |
+
rope_cos_sin=rope_cos_sin,
|
| 806 |
+
)
|
| 807 |
+
|
| 808 |
+
# residual connection
|
| 809 |
+
hidden_states = attn_output + residual
|
| 810 |
+
|
| 811 |
+
residual = hidden_states
|
| 812 |
+
hidden_states = self.ln_2(hidden_states)
|
| 813 |
+
|
| 814 |
+
feed_forward_hidden_states = self.mlp(hidden_states)
|
| 815 |
+
|
| 816 |
+
# residual connection
|
| 817 |
+
hidden_states = residual + feed_forward_hidden_states
|
| 818 |
+
|
| 819 |
+
return hidden_states
|
| 820 |
+
|
| 821 |
+
|
| 822 |
+
##################################################
|
| 823 |
+
# model classes
|
| 824 |
+
|
| 825 |
+
|
| 826 |
+
class GranitePreTrainedModel(PreTrainedModel):
|
| 827 |
+
"""
|
| 828 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
| 829 |
+
models.
|
| 830 |
+
"""
|
| 831 |
+
|
| 832 |
+
config_class = GraniteConfig
|
| 833 |
+
base_model_prefix = "transformer"
|
| 834 |
+
causal = True
|
| 835 |
+
_no_split_modules = ["GraniteBlock"]
|
| 836 |
+
_skip_keys_device_placement = "past_key_values"
|
| 837 |
+
_supports_sdpa = True
|
| 838 |
+
_supports_flash_attn_2 = True
|
| 839 |
+
|
| 840 |
+
def __init__(self, config: GraniteConfig, *inputs, **kwargs):
|
| 841 |
+
super().__init__(config, *inputs, **kwargs)
|
| 842 |
+
|
| 843 |
+
self.attention_implementation = self.config._attn_implementation
|
| 844 |
+
self._use_eager_attention = self.attention_implementation == "eager"
|
| 845 |
+
self._use_sdpa = self.attention_implementation == "sdpa"
|
| 846 |
+
self._use_flash_attention_2 = self.attention_implementation == "flash_attention_2"
|
| 847 |
+
|
| 848 |
+
self.initializer_range = config.initializer_range
|
| 849 |
+
|
| 850 |
+
def _init_weights(self, module: nn.Module) -> None:
|
| 851 |
+
if isinstance(module, (nn.LayerNorm, RMSNorm, Alibi, RoPE)):
|
| 852 |
+
module.reset_parameters()
|
| 853 |
+
elif isinstance(module, nn.Linear):
|
| 854 |
+
nn.init.normal_(module.weight, mean=0, std=self.initializer_range)
|
| 855 |
+
if module.bias is not None:
|
| 856 |
+
module.bias.zero_()
|
| 857 |
+
elif isinstance(module, nn.Embedding):
|
| 858 |
+
nn.init.normal_(module.weight, mean=0, std=self.initializer_range)
|
| 859 |
+
if module.padding_idx is not None:
|
| 860 |
+
module.weight[module.padding_idx].zero_()
|
| 861 |
+
|
| 862 |
+
|
| 863 |
+
class GraniteModel(GranitePreTrainedModel):
|
| 864 |
+
_keys_to_ignore_on_load_missing = ["attn.masked_bias"]
|
| 865 |
+
mask_value = None
|
| 866 |
+
|
| 867 |
+
def __init__(self, config: GraniteConfig, **kwargs) -> None:
|
| 868 |
+
super().__init__(config, **kwargs)
|
| 869 |
+
|
| 870 |
+
self.attention_head_type = AttentionHeadType(config.attention_head_type)
|
| 871 |
+
self.embed_dim = config.hidden_size
|
| 872 |
+
self.num_heads = config.num_attention_heads
|
| 873 |
+
self.num_key_value_heads = config.num_key_value_heads
|
| 874 |
+
|
| 875 |
+
assert (
|
| 876 |
+
self.embed_dim % self.num_heads == 0
|
| 877 |
+
), f"`embed_dim` ({self.embed_dim}) must be divisible by `num_heads` ({self.num_heads})"
|
| 878 |
+
|
| 879 |
+
self.head_dim = self.embed_dim // self.num_heads
|
| 880 |
+
|
| 881 |
+
self.wte = nn.Embedding(config.vocab_size, self.embed_dim)
|
| 882 |
+
|
| 883 |
+
self.drop = nn.Identity() if config.embd_pdrop == 0 else nn.Dropout(config.embd_pdrop)
|
| 884 |
+
self.h = nn.ModuleList(
|
| 885 |
+
[GraniteBlock(config, self.attention_implementation, layer_idx=i) for i in range(config.num_hidden_layers)]
|
| 886 |
+
)
|
| 887 |
+
self.ln_f = get_normalization_function(
|
| 888 |
+
config.normalization_function,
|
| 889 |
+
self.embed_dim,
|
| 890 |
+
eps=config.layer_norm_epsilon,
|
| 891 |
+
)
|
| 892 |
+
|
| 893 |
+
self.position_embedding_type = PositionEmbeddingType(config.position_embedding_type)
|
| 894 |
+
|
| 895 |
+
if self.position_embedding_type == PositionEmbeddingType.learned_absolute:
|
| 896 |
+
self.wpe = nn.Embedding(config.n_positions, self.embed_dim)
|
| 897 |
+
elif self.position_embedding_type == PositionEmbeddingType.alibi:
|
| 898 |
+
assert not self._use_flash_attention_2, "alibi is not implemented with FlashAttention"
|
| 899 |
+
|
| 900 |
+
self.alibi = Alibi(self.num_heads)
|
| 901 |
+
elif self.position_embedding_type == PositionEmbeddingType.rope:
|
| 902 |
+
self.rope = RoPE(self.head_dim, max_position_embeddings=config.n_positions, base=config.rope_theta)
|
| 903 |
+
else:
|
| 904 |
+
raise NotImplementedError()
|
| 905 |
+
|
| 906 |
+
# Initialize weights and apply final processing
|
| 907 |
+
self.post_init()
|
| 908 |
+
|
| 909 |
+
def get_input_embeddings(self) -> nn.Embedding:
|
| 910 |
+
return self.wte
|
| 911 |
+
|
| 912 |
+
def set_input_embeddings(self, new_embeddings: nn.Embedding) -> None:
|
| 913 |
+
self.wte = new_embeddings
|
| 914 |
+
|
| 915 |
+
def forward(
|
| 916 |
+
self,
|
| 917 |
+
input_ids: Optional[torch.Tensor] = None,
|
| 918 |
+
past_key_values: Optional[DynamicCache] = None,
|
| 919 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 920 |
+
token_type_ids: Optional[torch.Tensor] = None,
|
| 921 |
+
position_ids: Optional[torch.Tensor] = None,
|
| 922 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 923 |
+
use_cache: Optional[bool] = None,
|
| 924 |
+
output_hidden_states: Optional[bool] = None,
|
| 925 |
+
return_dict: Optional[bool] = None,
|
| 926 |
+
) -> Union[Tuple, BaseModelOutputWithPastAndCrossAttentions]:
|
| 927 |
+
(
|
| 928 |
+
output_hidden_states,
|
| 929 |
+
use_cache,
|
| 930 |
+
return_dict,
|
| 931 |
+
input_shape,
|
| 932 |
+
hidden_states,
|
| 933 |
+
attention_mask,
|
| 934 |
+
position_ids,
|
| 935 |
+
rope_cos_sin,
|
| 936 |
+
past_key_values,
|
| 937 |
+
) = self._prepare_a_bunch_of_stuff(
|
| 938 |
+
input_ids=input_ids,
|
| 939 |
+
past_key_values=past_key_values,
|
| 940 |
+
attention_mask=attention_mask,
|
| 941 |
+
token_type_ids=token_type_ids,
|
| 942 |
+
position_ids=position_ids,
|
| 943 |
+
inputs_embeds=inputs_embeds,
|
| 944 |
+
use_cache=use_cache,
|
| 945 |
+
output_hidden_states=output_hidden_states,
|
| 946 |
+
return_dict=return_dict,
|
| 947 |
+
)
|
| 948 |
+
|
| 949 |
+
# ==========================================================================================
|
| 950 |
+
# flash:
|
| 951 |
+
# attention_mask -> (batch_size, key_length)
|
| 952 |
+
# else:
|
| 953 |
+
# attention_mask -> (batch_size, 1, query_length, key_length)
|
| 954 |
+
# ==========================================================================================
|
| 955 |
+
|
| 956 |
+
output_shape = input_shape + (hidden_states.size(-1),)
|
| 957 |
+
|
| 958 |
+
past_key_values = DynamicCache() if use_cache and past_key_values is None else past_key_values
|
| 959 |
+
all_hidden_states = () if output_hidden_states else None
|
| 960 |
+
for block in self.h:
|
| 961 |
+
if output_hidden_states:
|
| 962 |
+
all_hidden_states += (hidden_states,)
|
| 963 |
+
|
| 964 |
+
hidden_states = block(
|
| 965 |
+
hidden_states,
|
| 966 |
+
past_key_values=past_key_values,
|
| 967 |
+
attention_mask=attention_mask,
|
| 968 |
+
rope_cos_sin=rope_cos_sin,
|
| 969 |
+
)
|
| 970 |
+
|
| 971 |
+
hidden_states = self.ln_f(hidden_states)
|
| 972 |
+
|
| 973 |
+
hidden_states = hidden_states.view(output_shape)
|
| 974 |
+
# Add last hidden state
|
| 975 |
+
if output_hidden_states:
|
| 976 |
+
all_hidden_states += (hidden_states,)
|
| 977 |
+
|
| 978 |
+
if not return_dict:
|
| 979 |
+
return tuple(v for v in [hidden_states, past_key_values, all_hidden_states] if v is not None)
|
| 980 |
+
|
| 981 |
+
return BaseModelOutputWithPastAndCrossAttentions(
|
| 982 |
+
last_hidden_state=hidden_states,
|
| 983 |
+
past_key_values=past_key_values,
|
| 984 |
+
hidden_states=all_hidden_states,
|
| 985 |
+
)
|
| 986 |
+
|
| 987 |
+
def _get_position_ids(
|
| 988 |
+
self, attention_mask: torch.Tensor, past_length: int, query_length: int, key_length: int, device: torch.device
|
| 989 |
+
) -> torch.Tensor:
|
| 990 |
+
if attention_mask is not None and len(attention_mask.shape) == 2:
|
| 991 |
+
# create position_ids on the fly for batch generation
|
| 992 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 993 |
+
position_ids.masked_fill_(attention_mask == 0, 0)
|
| 994 |
+
if past_length > 0:
|
| 995 |
+
position_ids = position_ids[:, past_length:key_length:]
|
| 996 |
+
else:
|
| 997 |
+
position_ids = torch.arange(past_length, key_length, dtype=torch.long, device=device)
|
| 998 |
+
position_ids = position_ids.unsqueeze(0).view(-1, query_length)
|
| 999 |
+
|
| 1000 |
+
return position_ids
|
| 1001 |
+
|
| 1002 |
+
def _get_alibi_bias(
|
| 1003 |
+
self,
|
| 1004 |
+
attention_mask: torch.Tensor,
|
| 1005 |
+
batch_size: int,
|
| 1006 |
+
query_length: int,
|
| 1007 |
+
key_length: int,
|
| 1008 |
+
device: torch.device,
|
| 1009 |
+
dtype: torch.dtype,
|
| 1010 |
+
) -> torch.Tensor:
|
| 1011 |
+
if self.position_embedding_type != PositionEmbeddingType.alibi:
|
| 1012 |
+
return None
|
| 1013 |
+
|
| 1014 |
+
alibi_bias = self.alibi(attention_mask, batch_size, key_length, device, dtype)
|
| 1015 |
+
|
| 1016 |
+
# ==========================================================================================
|
| 1017 |
+
# alibi_bias -> (batch_size, num_heads, key_length)
|
| 1018 |
+
# ==========================================================================================
|
| 1019 |
+
|
| 1020 |
+
alibi_bias = alibi_bias.unsqueeze(2)
|
| 1021 |
+
if query_length != 1:
|
| 1022 |
+
alibi_bias = alibi_bias.expand(-1, -1, query_length, -1)
|
| 1023 |
+
|
| 1024 |
+
# ==========================================================================================
|
| 1025 |
+
# alibi_bias -> (batch_size, num_heads, query_length, key_length)
|
| 1026 |
+
# ==========================================================================================
|
| 1027 |
+
|
| 1028 |
+
return alibi_bias
|
| 1029 |
+
|
| 1030 |
+
def _get_rope_cos_sin(
|
| 1031 |
+
self, key_length: int, position_ids: torch.Tensor, dtype: torch.dtype, device: torch.device
|
| 1032 |
+
) -> Optional[Tuple[torch.Tensor, torch.Tensor]]:
|
| 1033 |
+
if self.position_embedding_type == PositionEmbeddingType.rope:
|
| 1034 |
+
cos, sin = self.rope(key_length, dtype=dtype, device=device)
|
| 1035 |
+
cos = cos[position_ids].unsqueeze(1)
|
| 1036 |
+
sin = sin[position_ids].unsqueeze(1)
|
| 1037 |
+
return cos, sin
|
| 1038 |
+
|
| 1039 |
+
def _prepare_causal_attention_mask(
|
| 1040 |
+
self, attention_mask: torch.Tensor, batch_size: int, query_length: int, key_length: int, device: torch.device
|
| 1041 |
+
) -> torch.Tensor:
|
| 1042 |
+
past_length = key_length - query_length
|
| 1043 |
+
|
| 1044 |
+
# ==========================================================================================
|
| 1045 |
+
# attention_mask -> (batch_size, key_length)
|
| 1046 |
+
# ==========================================================================================
|
| 1047 |
+
|
| 1048 |
+
if query_length > 1:
|
| 1049 |
+
# (query_length, key_length)
|
| 1050 |
+
causal_mask = torch.empty((query_length, key_length), dtype=torch.bool, device=device)
|
| 1051 |
+
causal_mask[:, past_length:] = torch.tril(
|
| 1052 |
+
torch.ones(query_length, query_length, dtype=torch.bool, device=device)
|
| 1053 |
+
)
|
| 1054 |
+
|
| 1055 |
+
if past_length > 0:
|
| 1056 |
+
causal_mask[:, :past_length] = True
|
| 1057 |
+
|
| 1058 |
+
# (query_length, key_length) -> (1, query_length, key_length)
|
| 1059 |
+
causal_mask = causal_mask.unsqueeze(0)
|
| 1060 |
+
|
| 1061 |
+
if attention_mask is None:
|
| 1062 |
+
# (1, query_length, key_length) -> (batch_size, query_length, key_length)
|
| 1063 |
+
causal_mask = causal_mask.expand(batch_size, -1, -1)
|
| 1064 |
+
else:
|
| 1065 |
+
# (1, query_length, key_length) & (batch_size, 1, key_length) -> (batch_size, query_length, key_length)
|
| 1066 |
+
causal_mask = causal_mask & attention_mask.unsqueeze(1).to(torch.bool)
|
| 1067 |
+
else:
|
| 1068 |
+
if attention_mask is None:
|
| 1069 |
+
# (batch_size, query_length, key_length)
|
| 1070 |
+
causal_mask = torch.ones(batch_size, query_length, key_length, dtype=torch.bool, device=device)
|
| 1071 |
+
else:
|
| 1072 |
+
# (batch_size, query_length, key_length)
|
| 1073 |
+
causal_mask = attention_mask.unsqueeze(1).to(dtype=torch.bool, device=device)
|
| 1074 |
+
|
| 1075 |
+
# ==========================================================================================
|
| 1076 |
+
# attention_mask -> (batch_size, query_length, key_length)
|
| 1077 |
+
# ==========================================================================================
|
| 1078 |
+
|
| 1079 |
+
causal_mask = causal_mask.unsqueeze(1)
|
| 1080 |
+
|
| 1081 |
+
# ==========================================================================================
|
| 1082 |
+
# attention_mask -> (batch_size, 1, query_length, key_length)
|
| 1083 |
+
# ==========================================================================================
|
| 1084 |
+
|
| 1085 |
+
return causal_mask
|
| 1086 |
+
|
| 1087 |
+
def _get_initial_hidden_state(
|
| 1088 |
+
self,
|
| 1089 |
+
input_ids: torch.Tensor,
|
| 1090 |
+
inputs_embeds: torch.Tensor,
|
| 1091 |
+
position_ids: torch.Tensor,
|
| 1092 |
+
token_type_ids: torch.Tensor,
|
| 1093 |
+
) -> torch.Tensor:
|
| 1094 |
+
if inputs_embeds is None:
|
| 1095 |
+
inputs_embeds = self.wte(input_ids)
|
| 1096 |
+
|
| 1097 |
+
if self.position_embedding_type == PositionEmbeddingType.learned_absolute:
|
| 1098 |
+
inputs_embeds = inputs_embeds + self.wpe(position_ids)
|
| 1099 |
+
|
| 1100 |
+
if token_type_ids is not None:
|
| 1101 |
+
inputs_embeds = inputs_embeds + self.wte(token_type_ids)
|
| 1102 |
+
|
| 1103 |
+
inputs_embeds = self.drop(inputs_embeds)
|
| 1104 |
+
|
| 1105 |
+
return inputs_embeds
|
| 1106 |
+
|
| 1107 |
+
def _prepare_a_bunch_of_stuff(
|
| 1108 |
+
self,
|
| 1109 |
+
input_ids: torch.Tensor,
|
| 1110 |
+
past_key_values: DynamicCache,
|
| 1111 |
+
attention_mask: torch.Tensor,
|
| 1112 |
+
token_type_ids: torch.Tensor,
|
| 1113 |
+
position_ids: torch.Tensor,
|
| 1114 |
+
inputs_embeds: torch.Tensor,
|
| 1115 |
+
use_cache: bool,
|
| 1116 |
+
output_hidden_states: bool,
|
| 1117 |
+
return_dict: bool,
|
| 1118 |
+
) -> Tuple[
|
| 1119 |
+
bool,
|
| 1120 |
+
bool,
|
| 1121 |
+
bool,
|
| 1122 |
+
torch.Size,
|
| 1123 |
+
torch.Tensor,
|
| 1124 |
+
torch.Tensor,
|
| 1125 |
+
torch.Tensor,
|
| 1126 |
+
Optional[Tuple[torch.Tensor, torch.Tensor]],
|
| 1127 |
+
DynamicCache,
|
| 1128 |
+
]:
|
| 1129 |
+
output_hidden_states = (
|
| 1130 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
| 1131 |
+
)
|
| 1132 |
+
|
| 1133 |
+
use_cache = self.config.use_cache if use_cache is None else use_cache
|
| 1134 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1135 |
+
|
| 1136 |
+
if input_ids is not None and inputs_embeds is not None:
|
| 1137 |
+
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
| 1138 |
+
elif input_ids is not None:
|
| 1139 |
+
input_shape = input_ids.size()
|
| 1140 |
+
elif inputs_embeds is not None:
|
| 1141 |
+
# TODO special handling for padding free transformer needed here if we support inputs_embeds argument
|
| 1142 |
+
input_shape = inputs_embeds.size()[:-1]
|
| 1143 |
+
else:
|
| 1144 |
+
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
| 1145 |
+
|
| 1146 |
+
batch_size = input_shape[0]
|
| 1147 |
+
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
| 1148 |
+
|
| 1149 |
+
if self.position_embedding_type == PositionEmbeddingType.alibi:
|
| 1150 |
+
if position_ids is not None:
|
| 1151 |
+
warnings.warn("`position_ids` have no functionality with Alibi.", FutureWarning)
|
| 1152 |
+
|
| 1153 |
+
if token_type_ids is not None:
|
| 1154 |
+
token_type_ids = token_type_ids.view(-1, input_shape[-1])
|
| 1155 |
+
|
| 1156 |
+
# ==========================================================================================
|
| 1157 |
+
# input_ids -> (batch_size, query_length)
|
| 1158 |
+
# attention_mask -> None or (batch_size, key_length)
|
| 1159 |
+
# position_ids -> None or (batch_size, key_length)
|
| 1160 |
+
# ==========================================================================================
|
| 1161 |
+
|
| 1162 |
+
past_length = 0 if past_key_values is None else past_key_values.get_seq_length()
|
| 1163 |
+
query_length = input_shape[-1]
|
| 1164 |
+
key_length = past_length + query_length
|
| 1165 |
+
|
| 1166 |
+
if position_ids is None:
|
| 1167 |
+
position_ids = self._get_position_ids(attention_mask, past_length, query_length, key_length, device)
|
| 1168 |
+
|
| 1169 |
+
# ==========================================================================================
|
| 1170 |
+
# input_ids -> (batch_size, query_length)
|
| 1171 |
+
# attention_mask -> None or (batch_size, key_length)
|
| 1172 |
+
# position_ids -> (batch_size, query_length)
|
| 1173 |
+
# ==========================================================================================
|
| 1174 |
+
|
| 1175 |
+
hidden_states = self._get_initial_hidden_state(input_ids, inputs_embeds, position_ids, token_type_ids)
|
| 1176 |
+
|
| 1177 |
+
# ==========================================================================================
|
| 1178 |
+
# hidden_states -> (batch_size, query_length, num_heads * head_dim)
|
| 1179 |
+
# ==========================================================================================
|
| 1180 |
+
|
| 1181 |
+
alibi_bias = self._get_alibi_bias(
|
| 1182 |
+
attention_mask, batch_size, query_length, key_length, device, hidden_states.dtype
|
| 1183 |
+
)
|
| 1184 |
+
|
| 1185 |
+
# ==========================================================================================
|
| 1186 |
+
# alibi_bias -> (batch_size, num_heads, query_length, key_length)
|
| 1187 |
+
# ==========================================================================================
|
| 1188 |
+
|
| 1189 |
+
rope_cos_sin = self._get_rope_cos_sin(
|
| 1190 |
+
key_length, position_ids, dtype=hidden_states.dtype, device=hidden_states.device
|
| 1191 |
+
)
|
| 1192 |
+
|
| 1193 |
+
# ==========================================================================================
|
| 1194 |
+
# rope_cos_sin -> 2 * (key_length, head_dim)
|
| 1195 |
+
# ==========================================================================================
|
| 1196 |
+
|
| 1197 |
+
# prepare causal mask only if not using flash attention
|
| 1198 |
+
if self._use_flash_attention_2:
|
| 1199 |
+
if attention_mask is None:
|
| 1200 |
+
attention_mask = torch.ones_like(input_ids)
|
| 1201 |
+
elif self._use_sdpa:
|
| 1202 |
+
# we use the causal/non-causal argument of SDPA for attention in this case
|
| 1203 |
+
if attention_mask is not None:
|
| 1204 |
+
attention_mask = self._prepare_causal_attention_mask(
|
| 1205 |
+
attention_mask, batch_size, query_length, key_length, device
|
| 1206 |
+
)
|
| 1207 |
+
|
| 1208 |
+
attention_mask = torch.where(
|
| 1209 |
+
attention_mask,
|
| 1210 |
+
~attention_mask if alibi_bias is None else alibi_bias,
|
| 1211 |
+
self._get_mask_value(attention_mask.device, hidden_states.dtype),
|
| 1212 |
+
)
|
| 1213 |
+
else:
|
| 1214 |
+
attention_mask = self._prepare_causal_attention_mask(
|
| 1215 |
+
attention_mask, batch_size, query_length, key_length, device
|
| 1216 |
+
)
|
| 1217 |
+
|
| 1218 |
+
attention_mask = torch.where(
|
| 1219 |
+
attention_mask,
|
| 1220 |
+
~attention_mask if alibi_bias is None else alibi_bias,
|
| 1221 |
+
self._get_mask_value(attention_mask.device, hidden_states.dtype),
|
| 1222 |
+
)
|
| 1223 |
+
|
| 1224 |
+
return (
|
| 1225 |
+
output_hidden_states,
|
| 1226 |
+
use_cache,
|
| 1227 |
+
return_dict,
|
| 1228 |
+
input_shape,
|
| 1229 |
+
hidden_states,
|
| 1230 |
+
attention_mask,
|
| 1231 |
+
position_ids,
|
| 1232 |
+
rope_cos_sin,
|
| 1233 |
+
past_key_values,
|
| 1234 |
+
)
|
| 1235 |
+
|
| 1236 |
+
def _get_mask_value(self, device: torch.device, dtype: torch.dtype) -> torch.Tensor:
|
| 1237 |
+
# torch.where expects a tensor. We use a cache to avoid recreating it every time.
|
| 1238 |
+
if self.mask_value is None or self.mask_value.dtype != dtype or self.mask_value.device != device:
|
| 1239 |
+
self.mask_value = torch.full([], torch.finfo(torch.float16).min, dtype=dtype, device=device)
|
| 1240 |
+
return self.mask_value
|
| 1241 |
+
|
| 1242 |
+
|
| 1243 |
+
class GraniteForCausalLM(GranitePreTrainedModel):
|
| 1244 |
+
_keys_to_ignore_on_load_missing = ["lm_head.weight"]
|
| 1245 |
+
|
| 1246 |
+
def __init__(self, config: GraniteConfig, **kwargs) -> None:
|
| 1247 |
+
super().__init__(config, **kwargs)
|
| 1248 |
+
self.transformer = GraniteModel(config, **kwargs)
|
| 1249 |
+
self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
|
| 1250 |
+
|
| 1251 |
+
# Initialize weights and apply final processing
|
| 1252 |
+
self.post_init()
|
| 1253 |
+
|
| 1254 |
+
def get_input_embeddings(self) -> nn.Embedding:
|
| 1255 |
+
return self.transformer.wte
|
| 1256 |
+
|
| 1257 |
+
def set_input_embeddings(self, value: nn.Embedding) -> None:
|
| 1258 |
+
self.transformer.wte = value
|
| 1259 |
+
|
| 1260 |
+
def get_output_embeddings(self) -> nn.Linear:
|
| 1261 |
+
return self.lm_head
|
| 1262 |
+
|
| 1263 |
+
def set_output_embeddings(self, new_embeddings: nn.Linear) -> None:
|
| 1264 |
+
self.lm_head = new_embeddings
|
| 1265 |
+
|
| 1266 |
+
# FIXME typing
|
| 1267 |
+
def prepare_inputs_for_generation(
|
| 1268 |
+
self,
|
| 1269 |
+
input_ids: torch.Tensor,
|
| 1270 |
+
past_key_values: Optional[DynamicCache] = None,
|
| 1271 |
+
inputs_embeds: Optional[torch.Tensor] = None,
|
| 1272 |
+
**kwargs,
|
| 1273 |
+
) -> dict:
|
| 1274 |
+
token_type_ids = kwargs.get("token_type_ids", None)
|
| 1275 |
+
# Omit tokens covered by past_key_values
|
| 1276 |
+
if past_key_values:
|
| 1277 |
+
past_length = past_key_values.get_seq_length()
|
| 1278 |
+
|
| 1279 |
+
# Some generation methods already pass only the last input ID
|
| 1280 |
+
if input_ids.shape[1] > past_length:
|
| 1281 |
+
remove_prefix_length = past_length
|
| 1282 |
+
else:
|
| 1283 |
+
# Default to old behavior: keep only final ID
|
| 1284 |
+
remove_prefix_length = input_ids.shape[1] - 1
|
| 1285 |
+
|
| 1286 |
+
input_ids = input_ids[:, remove_prefix_length:]
|
| 1287 |
+
if token_type_ids is not None:
|
| 1288 |
+
token_type_ids = token_type_ids[:, -input_ids.shape[1] :]
|
| 1289 |
+
|
| 1290 |
+
attention_mask = kwargs.get("attention_mask", None)
|
| 1291 |
+
position_ids = kwargs.get("position_ids", None)
|
| 1292 |
+
|
| 1293 |
+
if attention_mask is not None and position_ids is None:
|
| 1294 |
+
# create position_ids on the fly for batch generation
|
| 1295 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
| 1296 |
+
position_ids.masked_fill_(attention_mask == 0, 0)
|
| 1297 |
+
if past_key_values:
|
| 1298 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
| 1299 |
+
else:
|
| 1300 |
+
position_ids = None
|
| 1301 |
+
|
| 1302 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
| 1303 |
+
if inputs_embeds is not None and past_key_values is None:
|
| 1304 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
| 1305 |
+
else:
|
| 1306 |
+
model_inputs = {"input_ids": input_ids}
|
| 1307 |
+
|
| 1308 |
+
model_inputs.update(
|
| 1309 |
+
{
|
| 1310 |
+
"past_key_values": past_key_values,
|
| 1311 |
+
"use_cache": kwargs.get("use_cache"),
|
| 1312 |
+
"position_ids": position_ids,
|
| 1313 |
+
"attention_mask": attention_mask,
|
| 1314 |
+
"token_type_ids": token_type_ids,
|
| 1315 |
+
}
|
| 1316 |
+
)
|
| 1317 |
+
return model_inputs
|
| 1318 |
+
|
| 1319 |
+
def forward(
|
| 1320 |
+
self,
|
| 1321 |
+
input_ids: Optional[Union[torch.Tensor]] = None,
|
| 1322 |
+
past_key_values: Optional[DynamicCache] = None,
|
| 1323 |
+
attention_mask: Optional[torch.Tensor] = None,
|
| 1324 |
+
token_type_ids: Optional[Union[torch.Tensor]] = None,
|
| 1325 |
+
position_ids: Optional[Union[torch.Tensor]] = None,
|
| 1326 |
+
inputs_embeds: Optional[Union[torch.Tensor]] = None,
|
| 1327 |
+
labels: Optional[Union[torch.Tensor]] = None,
|
| 1328 |
+
use_cache: Optional[bool] = None,
|
| 1329 |
+
output_attentions: Optional[bool] = None,
|
| 1330 |
+
output_hidden_states: Optional[bool] = None,
|
| 1331 |
+
return_dict: Optional[bool] = None,
|
| 1332 |
+
) -> Union[Tuple, CausalLMOutputWithCrossAttentions]:
|
| 1333 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
| 1334 |
+
|
| 1335 |
+
# ==========================================================================================
|
| 1336 |
+
# input_ids -> (batch_size, query_length)
|
| 1337 |
+
# attention_mask -> None or (batch_size, key_length)
|
| 1338 |
+
# position_ids -> None or (batch_size, key_length)
|
| 1339 |
+
# ==========================================================================================
|
| 1340 |
+
|
| 1341 |
+
transformer_outputs = self.transformer(
|
| 1342 |
+
input_ids,
|
| 1343 |
+
past_key_values=past_key_values,
|
| 1344 |
+
attention_mask=attention_mask,
|
| 1345 |
+
token_type_ids=token_type_ids,
|
| 1346 |
+
position_ids=position_ids,
|
| 1347 |
+
inputs_embeds=inputs_embeds,
|
| 1348 |
+
use_cache=use_cache,
|
| 1349 |
+
output_hidden_states=output_hidden_states,
|
| 1350 |
+
return_dict=return_dict,
|
| 1351 |
+
)
|
| 1352 |
+
hidden_states = transformer_outputs[0]
|
| 1353 |
+
|
| 1354 |
+
lm_logits = self.lm_head(hidden_states)
|
| 1355 |
+
|
| 1356 |
+
loss = None
|
| 1357 |
+
# Shift so that tokens < n predict n
|
| 1358 |
+
if labels is not None:
|
| 1359 |
+
shift_logits = lm_logits[..., :-1, :].contiguous()
|
| 1360 |
+
shift_labels = labels[..., 1:].contiguous().to(shift_logits.device)
|
| 1361 |
+
|
| 1362 |
+
# Flatten the tokens
|
| 1363 |
+
loss_fct = nn.CrossEntropyLoss()
|
| 1364 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
|
| 1365 |
+
|
| 1366 |
+
if not return_dict:
|
| 1367 |
+
output = (lm_logits,) + transformer_outputs[1:]
|
| 1368 |
+
return ((loss,) + output) if loss is not None else output
|
| 1369 |
+
|
| 1370 |
+
return CausalLMOutputWithCrossAttentions(
|
| 1371 |
+
loss=loss,
|
| 1372 |
+
logits=lm_logits,
|
| 1373 |
+
past_key_values=transformer_outputs.past_key_values,
|
| 1374 |
+
hidden_states=transformer_outputs.hidden_states,
|
| 1375 |
+
attentions=transformer_outputs.attentions,
|
| 1376 |
+
)
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"additional_special_tokens": [
|
| 3 |
+
"<|endoftext|>",
|
| 4 |
+
"<fim_prefix>",
|
| 5 |
+
"<fim_middle>",
|
| 6 |
+
"<fim_suffix>",
|
| 7 |
+
"<fim_pad>",
|
| 8 |
+
"<filename>",
|
| 9 |
+
"<gh_stars>",
|
| 10 |
+
"<issue_start>",
|
| 11 |
+
"<issue_comment>",
|
| 12 |
+
"<issue_closed>",
|
| 13 |
+
"<jupyter_start>",
|
| 14 |
+
"<jupyter_text>",
|
| 15 |
+
"<jupyter_code>",
|
| 16 |
+
"<jupyter_output>",
|
| 17 |
+
"<empty_output>",
|
| 18 |
+
"<commit_before>",
|
| 19 |
+
"<commit_msg>",
|
| 20 |
+
"<commit_after>",
|
| 21 |
+
"<reponame>"
|
| 22 |
+
],
|
| 23 |
+
"bos_token": {
|
| 24 |
+
"content": "<|endoftext|>",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"eos_token": {
|
| 31 |
+
"content": "<|endoftext|>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"pad_token": {
|
| 38 |
+
"content": "<|endoftext|>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "<|endoftext|>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"added_tokens_decoder": {
|
| 4 |
+
"0": {
|
| 5 |
+
"content": "<|endoftext|>",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": false,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"special": true
|
| 11 |
+
},
|
| 12 |
+
"1": {
|
| 13 |
+
"content": "<fim_prefix>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": false,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false,
|
| 18 |
+
"special": true
|
| 19 |
+
},
|
| 20 |
+
"2": {
|
| 21 |
+
"content": "<fim_middle>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": false,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false,
|
| 26 |
+
"special": true
|
| 27 |
+
},
|
| 28 |
+
"3": {
|
| 29 |
+
"content": "<fim_suffix>",
|
| 30 |
+
"lstrip": false,
|
| 31 |
+
"normalized": false,
|
| 32 |
+
"rstrip": false,
|
| 33 |
+
"single_word": false,
|
| 34 |
+
"special": true
|
| 35 |
+
},
|
| 36 |
+
"4": {
|
| 37 |
+
"content": "<fim_pad>",
|
| 38 |
+
"lstrip": false,
|
| 39 |
+
"normalized": false,
|
| 40 |
+
"rstrip": false,
|
| 41 |
+
"single_word": false,
|
| 42 |
+
"special": true
|
| 43 |
+
},
|
| 44 |
+
"5": {
|
| 45 |
+
"content": "<filename>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false,
|
| 50 |
+
"special": true
|
| 51 |
+
},
|
| 52 |
+
"6": {
|
| 53 |
+
"content": "<gh_stars>",
|
| 54 |
+
"lstrip": false,
|
| 55 |
+
"normalized": false,
|
| 56 |
+
"rstrip": false,
|
| 57 |
+
"single_word": false,
|
| 58 |
+
"special": true
|
| 59 |
+
},
|
| 60 |
+
"7": {
|
| 61 |
+
"content": "<issue_start>",
|
| 62 |
+
"lstrip": false,
|
| 63 |
+
"normalized": false,
|
| 64 |
+
"rstrip": false,
|
| 65 |
+
"single_word": false,
|
| 66 |
+
"special": true
|
| 67 |
+
},
|
| 68 |
+
"8": {
|
| 69 |
+
"content": "<issue_comment>",
|
| 70 |
+
"lstrip": false,
|
| 71 |
+
"normalized": false,
|
| 72 |
+
"rstrip": false,
|
| 73 |
+
"single_word": false,
|
| 74 |
+
"special": true
|
| 75 |
+
},
|
| 76 |
+
"9": {
|
| 77 |
+
"content": "<issue_closed>",
|
| 78 |
+
"lstrip": false,
|
| 79 |
+
"normalized": false,
|
| 80 |
+
"rstrip": false,
|
| 81 |
+
"single_word": false,
|
| 82 |
+
"special": true
|
| 83 |
+
},
|
| 84 |
+
"10": {
|
| 85 |
+
"content": "<jupyter_start>",
|
| 86 |
+
"lstrip": false,
|
| 87 |
+
"normalized": false,
|
| 88 |
+
"rstrip": false,
|
| 89 |
+
"single_word": false,
|
| 90 |
+
"special": true
|
| 91 |
+
},
|
| 92 |
+
"11": {
|
| 93 |
+
"content": "<jupyter_text>",
|
| 94 |
+
"lstrip": false,
|
| 95 |
+
"normalized": false,
|
| 96 |
+
"rstrip": false,
|
| 97 |
+
"single_word": false,
|
| 98 |
+
"special": true
|
| 99 |
+
},
|
| 100 |
+
"12": {
|
| 101 |
+
"content": "<jupyter_code>",
|
| 102 |
+
"lstrip": false,
|
| 103 |
+
"normalized": false,
|
| 104 |
+
"rstrip": false,
|
| 105 |
+
"single_word": false,
|
| 106 |
+
"special": true
|
| 107 |
+
},
|
| 108 |
+
"13": {
|
| 109 |
+
"content": "<jupyter_output>",
|
| 110 |
+
"lstrip": false,
|
| 111 |
+
"normalized": false,
|
| 112 |
+
"rstrip": false,
|
| 113 |
+
"single_word": false,
|
| 114 |
+
"special": true
|
| 115 |
+
},
|
| 116 |
+
"14": {
|
| 117 |
+
"content": "<empty_output>",
|
| 118 |
+
"lstrip": false,
|
| 119 |
+
"normalized": false,
|
| 120 |
+
"rstrip": false,
|
| 121 |
+
"single_word": false,
|
| 122 |
+
"special": true
|
| 123 |
+
},
|
| 124 |
+
"15": {
|
| 125 |
+
"content": "<commit_before>",
|
| 126 |
+
"lstrip": false,
|
| 127 |
+
"normalized": false,
|
| 128 |
+
"rstrip": false,
|
| 129 |
+
"single_word": false,
|
| 130 |
+
"special": true
|
| 131 |
+
},
|
| 132 |
+
"16": {
|
| 133 |
+
"content": "<commit_msg>",
|
| 134 |
+
"lstrip": false,
|
| 135 |
+
"normalized": false,
|
| 136 |
+
"rstrip": false,
|
| 137 |
+
"single_word": false,
|
| 138 |
+
"special": true
|
| 139 |
+
},
|
| 140 |
+
"17": {
|
| 141 |
+
"content": "<commit_after>",
|
| 142 |
+
"lstrip": false,
|
| 143 |
+
"normalized": false,
|
| 144 |
+
"rstrip": false,
|
| 145 |
+
"single_word": false,
|
| 146 |
+
"special": true
|
| 147 |
+
},
|
| 148 |
+
"18": {
|
| 149 |
+
"content": "<reponame>",
|
| 150 |
+
"lstrip": false,
|
| 151 |
+
"normalized": false,
|
| 152 |
+
"rstrip": false,
|
| 153 |
+
"single_word": false,
|
| 154 |
+
"special": true
|
| 155 |
+
}
|
| 156 |
+
},
|
| 157 |
+
"additional_special_tokens": [
|
| 158 |
+
"<|endoftext|>",
|
| 159 |
+
"<fim_prefix>",
|
| 160 |
+
"<fim_middle>",
|
| 161 |
+
"<fim_suffix>",
|
| 162 |
+
"<fim_pad>",
|
| 163 |
+
"<filename>",
|
| 164 |
+
"<gh_stars>",
|
| 165 |
+
"<issue_start>",
|
| 166 |
+
"<issue_comment>",
|
| 167 |
+
"<issue_closed>",
|
| 168 |
+
"<jupyter_start>",
|
| 169 |
+
"<jupyter_text>",
|
| 170 |
+
"<jupyter_code>",
|
| 171 |
+
"<jupyter_output>",
|
| 172 |
+
"<empty_output>",
|
| 173 |
+
"<commit_before>",
|
| 174 |
+
"<commit_msg>",
|
| 175 |
+
"<commit_after>",
|
| 176 |
+
"<reponame>"
|
| 177 |
+
],
|
| 178 |
+
"bos_token": "<|endoftext|>",
|
| 179 |
+
"clean_up_tokenization_spaces": true,
|
| 180 |
+
"eos_token": "<|endoftext|>",
|
| 181 |
+
"model_max_length": 9223372036854775807,
|
| 182 |
+
"pad_token": "<|endoftext|>",
|
| 183 |
+
"padding_side": "left",
|
| 184 |
+
"tokenizer_class": "GPT2Tokenizer",
|
| 185 |
+
"unk_token": "<|endoftext|>",
|
| 186 |
+
"vocab_size": 49152
|
| 187 |
+
}
|