Update README.md
Browse files
README.md
CHANGED
|
@@ -54,6 +54,7 @@ Granite Vision model is supported natively `transformers` from the `main` branch
|
|
| 54 |
|
| 55 |
```python
|
| 56 |
from transformers import AutoProcessor, AutoModelForVision2Seq
|
|
|
|
| 57 |
import torch
|
| 58 |
|
| 59 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
@@ -63,14 +64,19 @@ processor = AutoProcessor.from_pretrained(model_path)
|
|
| 63 |
model = AutoModelForVision2Seq.from_pretrained(model_path).to(device)
|
| 64 |
|
| 65 |
# prepare image and text prompt, using the appropriate prompt template
|
| 66 |
-
|
|
|
|
| 67 |
|
| 68 |
conversation = [
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
{
|
| 70 |
"role": "user",
|
| 71 |
"content": [
|
| 72 |
-
{"type": "image", "url":
|
| 73 |
-
{"type": "text", "text": "What is
|
| 74 |
],
|
| 75 |
},
|
| 76 |
]
|
|
@@ -101,6 +107,8 @@ Then, copy the snippet from the section that is relevant for your use case.
|
|
| 101 |
```python
|
| 102 |
from vllm import LLM, SamplingParams
|
| 103 |
from vllm.assets.image import ImageAsset
|
|
|
|
|
|
|
| 104 |
|
| 105 |
model_path = "ibm-granite/granite-vision-3.1-2b-preview"
|
| 106 |
|
|
@@ -118,9 +126,10 @@ sampling_params = SamplingParams(
|
|
| 118 |
image_token = "<image>"
|
| 119 |
system_prompt = "<|system|>\nA chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.\n"
|
| 120 |
|
| 121 |
-
question = "What
|
| 122 |
prompt = f"{system_prompt}<|user|>\n{image_token}\n{question}\n<|assistant|>\n"
|
| 123 |
-
|
|
|
|
| 124 |
print(image)
|
| 125 |
|
| 126 |
# Build the inputs to vLLM; the image is passed as `multi_modal_data`.
|
|
|
|
| 54 |
|
| 55 |
```python
|
| 56 |
from transformers import AutoProcessor, AutoModelForVision2Seq
|
| 57 |
+
from huggingface_hub import hf_hub_download
|
| 58 |
import torch
|
| 59 |
|
| 60 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 64 |
model = AutoModelForVision2Seq.from_pretrained(model_path).to(device)
|
| 65 |
|
| 66 |
# prepare image and text prompt, using the appropriate prompt template
|
| 67 |
+
|
| 68 |
+
img_path = hf_hub_download(repo_id=model_path, filename='example.png')
|
| 69 |
|
| 70 |
conversation = [
|
| 71 |
+
{
|
| 72 |
+
"role": "system",
|
| 73 |
+
"content": "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions."
|
| 74 |
+
},
|
| 75 |
{
|
| 76 |
"role": "user",
|
| 77 |
"content": [
|
| 78 |
+
{"type": "image", "url": img_path},
|
| 79 |
+
{"type": "text", "text": "What is the highest scoring model on ChartQA and what is its score?"},
|
| 80 |
],
|
| 81 |
},
|
| 82 |
]
|
|
|
|
| 107 |
```python
|
| 108 |
from vllm import LLM, SamplingParams
|
| 109 |
from vllm.assets.image import ImageAsset
|
| 110 |
+
from huggingface_hub import hf_hub_download
|
| 111 |
+
from PIL import Image
|
| 112 |
|
| 113 |
model_path = "ibm-granite/granite-vision-3.1-2b-preview"
|
| 114 |
|
|
|
|
| 126 |
image_token = "<image>"
|
| 127 |
system_prompt = "<|system|>\nA chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.\n"
|
| 128 |
|
| 129 |
+
question = "What is the highest scoring model on ChartQA and what is its score?"
|
| 130 |
prompt = f"{system_prompt}<|user|>\n{image_token}\n{question}\n<|assistant|>\n"
|
| 131 |
+
img_path = hf_hub_download(repo_id=model_path, filename='example.png')
|
| 132 |
+
image = Image.open(img_path).convert("RGB")
|
| 133 |
print(image)
|
| 134 |
|
| 135 |
# Build the inputs to vLLM; the image is passed as `multi_modal_data`.
|