Updated README
Browse files
README.md
CHANGED
|
@@ -2,468 +2,239 @@
|
|
| 2 |
tags:
|
| 3 |
- sentence-transformers
|
| 4 |
- sentence-similarity
|
| 5 |
-
-
|
| 6 |
-
-
|
| 7 |
-
-
|
| 8 |
-
- dataset_size:24000
|
| 9 |
-
- loss:MultipleNegativesRankingLoss
|
| 10 |
-
base_model: impresso-project/histlux-gte-multilingual-base
|
| 11 |
widget:
|
| 12 |
-
- source_sentence:
|
| 13 |
sentences:
|
| 14 |
-
-
|
| 15 |
-
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
Meteorologischen Anstalt nach der Botschaft vom 21. Dezember 1981 wird ein Objektkedit
|
| 21 |
-
von 8,95 Millionen Franken bewilgt. Art. Dieser Beschluss ist nicht allgemeinverbindlich;
|
| 22 |
-
er untersteht nict dem Referendum. tänderat,. Juni 1982 Nationalrat,. eptember
|
| 23 |
-
1982 Der Präsident: Dreyer Die Präsidentin: Lang Die Sekretärin: Hube Der Protokollführer:
|
| 24 |
-
Zwicker 8177 '') BB11982 I 153 ,. 1982-870'
|
| 25 |
-
- 'Ei weise Rat. Ludwig XIV. von Frankreich erschien im Jahre 1872 mit einer ansehnlichen
|
| 26 |
-
Macht vor den Toren Amsterdams, welches nicht dn nötigen Widersand zu leisten
|
| 27 |
-
imstande war. Bei der Bevülke» rung herrscte die glühte Bestürzung und der Magistrat
|
| 28 |
-
beratschlagte, was unter diesen Umständen zu tun sei. Man kam dain überein. dem
|
| 29 |
-
König de Schlssel der Stadt zu überreichen. In diesem Augenblick bemerkte man.
|
| 30 |
-
daß ein alter Bürgermeister eingeschlafen war und seine Stimme noch nicht abgegeben
|
| 31 |
-
hatte Man weckte ihn: er erkundigte sich nach dem Resultat der Beratung. »Wir
|
| 32 |
-
wllen" hieß es.dem Knige die Schlüssel der Stadt übergeben." »Hat er se schon
|
| 33 |
-
verlangt?" fragte der ehrwüdige Vater der Stadt. »Noch nicht", mar die ntwort..Dann,
|
| 34 |
-
meine Herren", erwiderte er, »wollen wir wenigstens so lange waten, bis er sie
|
| 35 |
-
fordert. Dieser Einfall rettete die Reublik, denn schon am nächstenTage sah Ludwig
|
| 36 |
-
sich, eingetretener Umstände wegen, veranlaßt, der Stadt den Rücken zu wenden.'
|
| 37 |
-
- source_sentence: CHP lideri Kemal Kılıçdaroğlu, şehit cenazesinde kendisine yumurta
|
| 38 |
-
atan eylemciyi, 'Sen Müslüman bile olamazsın' diye eleştirdi.
|
| 39 |
sentences:
|
| 40 |
-
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
den gleichberechtigten Regierungen in Bon und Ostberlin werden Verträge un Verhandlungen
|
| 52 |
-
in Aussicht genommen. Das auptthema des Parteitages soll aberdas Regierungsprogramm
|
| 53 |
-
der SPD abgebe. Als Kanzlekandidaten will die Parteispitze den jetzigen Aussenminister
|
| 54 |
-
Willy Brand vorschlagn.
|
| 55 |
-
- source_sentence: Aber ich gab ihnen den Raum dafür.
|
| 56 |
sentences:
|
| 57 |
-
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
eview Committe, regroupant notamment la Réserve'Fédérale, (Fed) et un fons de
|
| 64 |
-
garantie (Fédéral Deposit Insurance Cor.) leurenjoignant de prendre des mesures
|
| 65 |
-
comptables. Les banques se sont refusées jeudi matin à tout commentaire Le Brésil
|
| 66 |
-
et l'Argentineont suspendu le paiement des intérêts et du principal d leur dette.
|
| 67 |
-
Alors qu'une décision de ce type était attendue de la part de la Commission e
|
| 68 |
-
ce qui concerne l'Argentine, compte tenu de la dgradation de lasituation financière
|
| 69 |
-
du pays, linclusion du Brésil a causé une surprise, indique-t-on par ailleurs
|
| 70 |
-
dans les mileux bancaires. Le Brésil, aen pline restructuration économique, devait
|
| 71 |
-
retourner à la table des négociations à l'automne. Cette décision va compliquer
|
| 72 |
-
les négociations entre les banues commerciales et les pays endettés.
|
| 73 |
-
- Aber ichgab ihnen den Raum dafür.
|
| 74 |
-
- '1709 Botschaft des Bndesrates an die Bundesversammlung bereffend Übertragung
|
| 75 |
-
der Konzession der Strassenbahn von Bern nach Zollikofen (B. Z. B.), mit Abzwegung
|
| 76 |
-
von der Tiefenaubrücke nach orblaufen, auf die Solothurn- Zollikof en-Bern-B ahn
|
| 77 |
-
A. -G. in Solothurn. (Vom 2. Februar 1923.) Mit Eingabe vom 30. Juni 1922 stellte
|
| 78 |
-
die Direktion der Solothurn-Zollikofen-Bern-Bhn (S. Z. B.) in Solothurn das Gesuch,
|
| 79 |
-
es sei die am 25. Juni 1909 (E. A. S. XXV, 195) erteilte und am 22. Dezember 1911
|
| 80 |
-
(E. A. S. XXVII, 273) abgeändert Konzession dr Strassenbahn von Bern nah Zollikofen,
|
| 81 |
-
mit Abzweigung von der Tiefenaubrückenach Worblaufen, auf sie (S. Z. B.) m Sinnedes
|
| 82 |
-
zwischen beiden Bahngesellschaften abgeschlossenen Fusionsvertrages vom 16. Mrz
|
| 83 |
-
1922 zu übertragen. Gemäss diesem Fusions vertrag (§ 1) haben sich die Solothurn-Bern-Bahn
|
| 84 |
-
(E. S. B.) und die Bern-Worblaufen-Zollikofen- Bahn (B. Z. B.) unter dem Namen
|
| 85 |
-
Solothurn-Zollikofen-Bern Bahn (S. Z. B.)zu einer einzigen Gesellschaft in der
|
| 86 |
-
Weise vereinigt, dass die Solothurn-Bern-Bahn (E. S. B.) die Bern-Worblaufen-
|
| 87 |
-
Zollikofen-Bahn (B. Z. B.) in sich aufnimmt. Infolge dieser Fusion gehen die Konzssion
|
| 88 |
-
der letztern, soie alle Akiven und Passiven mit Einschluss derMiet-, Pacht-, Betriebs-
|
| 89 |
-
und sonstigen Verträge auf die Solothurn-Bern-Bahn (E. S. B.), nun Solothurn-Zollikofen-Bern-Bahn
|
| 90 |
-
(S. Z. B.) über, während die Bern-Worblaufen-Zollikofen-Bahn (B. Z. B. mit Wirkung
|
| 91 |
-
auf den 1 Januar 1922 aufgelöst wird. Lau § des Fusionsvertrages übernimmt die
|
| 92 |
-
Solothurn-Bern- Bahn (E. S. B.), nun Solothurn-Zollikofen-Bern-Bahn (S. Z. B.),
|
| 93 |
-
das gesamte ständige, sich inangekündigter Stellung befindliche Personal der Bern-Worblaufen-Zollikofen-Bahn.
|
| 94 |
-
Sie verpflichtet sih ( 6), der Verwirklichung des Zweckes der Bern-Worblaufen-Zollikofe-Bahn,
|
| 95 |
-
d h. dem Betrieb einer Strassenbahn Zollikofe-Bern alle Aufmerksamkeit zu schenken,
|
| 96 |
-
den Lokalverkehr Zollikofen-Bern voll aufrechtzuerhalten ud nach Bedürfnis und
|
| 97 |
-
Möglichkeit auszubauen, also nebn dein durchgehenden Verkehr dienenden Zügen auch
|
| 98 |
-
dio nötige Zahl von Lokalzügen zu führen. Die berechtigten Wünsche der interessierten
|
| 99 |
-
Bevölkrung sind dabei nach Möglichkeit zu berücksichtigen. In ihren Vernehmlassungen
|
| 100 |
-
vom 14. August bzw. 8. Dezember 1922 erheben die Regierungen der Kantone Solothurn
|
| 101 |
-
und Bern gegen die Konzessonsübertragung kine Einwendung. Da auch von unserer
|
| 102 |
-
Seite nichts zu bemerken ist, beantragen wir Ihnen, dem Übertragungsesuchedurch
|
| 103 |
-
Annahm des nachfolgenden Bundesbeschlussentwurfes zu entsprechen. Wir benützen
|
| 104 |
-
auch diesen Anlass, Sie unserer ausgezeichnetn Hochachtung z versichern. Bern,
|
| 105 |
-
den 2. Februar 1923. Im Namen des Schweiz. Bundesrates, Der Bundespräsident: Scheurer.
|
| 106 |
-
Der Bundeskanzler: Steiger. (Entwurf.) Bndesbeschluss betreffend Übertraung der
|
| 107 |
-
Konzession der Strassenbahnvon Bern nach Zollikofen (ß. Z. B.), mit Abzweigung
|
| 108 |
-
von der Tiefenaubrücke nach Worblaufen, aufdieSolothurn- Zollikofen-Bern-Bahn
|
| 109 |
-
A. -G. in Solothurn. Die Bundesversammlung. der schweizerischen Eidgenssenschft,nach
|
| 110 |
-
Einsicht . einer Engabe de Diretion der Solothurn-Zollikofen-Bern- Bahn in Solothurn,
|
| 111 |
-
vom 30. Juni 1922, samt Beilagen, 2. einer Botschaft des Bundesrates vom 2. Februar
|
| 112 |
-
1923, beschliesst: . Die durch Bundesbeschlus vom 25. Juni 1909 (E. A. S. XXV,
|
| 113 |
-
195) erteilte und durch Bundesbeschluss vom 22. Der zember 1911 (E. A. S. XXVII,
|
| 114 |
-
273) abgeänderte Konzession einer Strassenbahn von Bern nach Zollikofen, mit Abzweigung
|
| 115 |
-
von de- Tiefenaubrücke nach Worblaufen, wird unter den gleichen Bedingungen auf
|
| 116 |
-
die Solothurn-ollikofen-Bern-Bahn A.-G. in Solothurn übertragen. . Der Bundesrat
|
| 117 |
-
ist mit dem Vollzug des gegenwärtigen Beschlusses, welcher am in Kraft tritt,
|
| 118 |
-
beauftragt.'
|
| 119 |
-
- source_sentence: Der syrische Bürgerkrieg, die Flüchtlingskrise und der Weltklimagipfel
|
| 120 |
-
in Paris waren Themen, die das Jahr 2015 dominierten. Der Blick zurück wird so
|
| 121 |
-
zu einem Ausblick auf das, was uns erst noch bevorsteht.
|
| 122 |
sentences:
|
| 123 |
-
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
- El malagueño Antoio Galdeano, Apoño, las ha visto de todos los colores para asentarse
|
| 128 |
-
en el centro del campo del Zaragoza
|
| 129 |
-
- source_sentence: Denken Sie nur an Sebastian und wie er die Katze kaufte, um seine
|
| 130 |
-
Reputation zu schützen.
|
| 131 |
sentences:
|
| 132 |
-
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
-
|
| 137 |
-
|
|
|
|
| 138 |
pipeline_tag: sentence-similarity
|
| 139 |
library_name: sentence-transformers
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 140 |
---
|
| 141 |
|
| 142 |
-
#
|
|
|
|
|
|
|
| 143 |
|
| 144 |
-
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [impresso-project/histlux-gte-multilingual-base](https://huggingface.co/impresso-project/histlux-gte-multilingual-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 145 |
|
| 146 |
## Model Details
|
| 147 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
### Model Description
|
| 149 |
-
- **Model Type:**
|
| 150 |
-
- **Base model:** [
|
| 151 |
- **Maximum Sequence Length:** 8192 tokens
|
| 152 |
- **Output Dimensionality:** 768 dimensions
|
| 153 |
- **Similarity Function:** Cosine Similarity
|
| 154 |
-
|
| 155 |
-
<!-- - **Language:** Unknown -->
|
| 156 |
-
<!-- - **License:** Unknown -->
|
| 157 |
|
| 158 |
-
### Model Sources
|
| 159 |
|
| 160 |
-
|
| 161 |
-
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 162 |
-
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 163 |
|
| 164 |
-
|
| 165 |
|
| 166 |
```
|
| 167 |
-
SentenceTransformer(
|
| 168 |
-
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False, 'architecture': 'NewModel'})
|
| 169 |
-
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 170 |
-
(2): Normalize()
|
| 171 |
-
)
|
| 172 |
-
```
|
| 173 |
-
|
| 174 |
-
## Usage
|
| 175 |
-
|
| 176 |
-
### Direct Usage (Sentence Transformers)
|
| 177 |
-
|
| 178 |
-
First install the Sentence Transformers library:
|
| 179 |
-
|
| 180 |
-
```bash
|
| 181 |
pip install -U sentence-transformers
|
| 182 |
```
|
| 183 |
|
| 184 |
-
Then you can
|
|
|
|
| 185 |
```python
|
| 186 |
from sentence_transformers import SentenceTransformer
|
|
|
|
| 187 |
|
| 188 |
-
|
| 189 |
-
model = SentenceTransformer("sentence_transformers_model_id")
|
| 190 |
-
# Run inference
|
| 191 |
-
sentences = [
|
| 192 |
-
'Denken Sie nur an Sebastian und wie er die Katze kaufte, um seine Reputation zu schützen.',
|
| 193 |
-
'Denken Sie nur an Sebastian und wise er die Kakze kaute, um rseine Reputation zu schützen.',
|
| 194 |
-
"J'ai reçu un bip des srgences vers 2hldu matin pour unhe fzmme avec un ulcère diabtique à son pied.",
|
| 195 |
-
]
|
| 196 |
embeddings = model.encode(sentences)
|
| 197 |
-
print(embeddings
|
| 198 |
-
# [3, 768]
|
| 199 |
-
|
| 200 |
-
# Get the similarity scores for the embeddings
|
| 201 |
-
similarities = model.similarity(embeddings, embeddings)
|
| 202 |
-
print(similarities)
|
| 203 |
-
# tensor([[1.0000, 0.9083, 0.0497],
|
| 204 |
-
# [0.9083, 1.0000, 0.0266],
|
| 205 |
-
# [0.0497, 0.0266, 1.0000]])
|
| 206 |
```
|
| 207 |
|
| 208 |
-
<!--
|
| 209 |
-
### Direct Usage (Transformers)
|
| 210 |
-
|
| 211 |
-
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 212 |
-
|
| 213 |
-
</details>
|
| 214 |
-
-->
|
| 215 |
-
|
| 216 |
-
<!--
|
| 217 |
-
### Downstream Usage (Sentence Transformers)
|
| 218 |
-
|
| 219 |
-
You can finetune this model on your own dataset.
|
| 220 |
-
|
| 221 |
-
<details><summary>Click to expand</summary>
|
| 222 |
-
|
| 223 |
-
</details>
|
| 224 |
-
-->
|
| 225 |
|
| 226 |
-
|
| 227 |
-
### Out-of-Scope Use
|
| 228 |
|
| 229 |
-
|
| 230 |
-
-->
|
| 231 |
|
| 232 |
-
|
| 233 |
-
## Bias, Risks and Limitations
|
| 234 |
|
| 235 |
-
|
| 236 |
-
|
|
|
|
|
|
|
| 237 |
|
| 238 |
-
|
| 239 |
-
|
|
|
|
| 240 |
|
| 241 |
-
|
| 242 |
-
-->
|
| 243 |
|
| 244 |
-
## Training Details
|
| 245 |
|
| 246 |
-
### Training
|
|
|
|
|
|
|
|
|
|
| 247 |
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
| 252 |
-
* Approximate statistics based on the first 1000 samples:
|
| 253 |
-
| | sentence_0 | sentence_1 | label |
|
| 254 |
-
|:--------|:-------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------|:--------------------------------------------------------------|
|
| 255 |
-
| type | string | string | float |
|
| 256 |
-
| details | <ul><li>min: 6 tokens</li><li>mean: 302.64 tokens</li><li>max: 8192 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 312.67 tokens</li><li>max: 8192 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
|
| 257 |
-
* Samples:
|
| 258 |
-
| sentence_0 | sentence_1 | label |
|
| 259 |
-
|:------------------------------------------------------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------------------------|:-----------------|
|
| 260 |
-
| <code>Le Thaïlandais Apichatpong Weerasethakul est le grand gagnant d'un Festival marqué par des surprises</code> | <code>Le TÜaïlandais Apichatpong Weeraswethakul est e grand gagnantC d'un Fesiival marqué par des surprises</code> | <code>1.0</code> |
|
| 261 |
-
| <code>Конкурс - не цыганский табор, не может в одночасье сорваться с места</code> | <code>Конкурс - нехцыганскиб табор, не может в одночасье сорваться с ыеста</code> | <code>1.0</code> |
|
| 262 |
-
| <code>Произошли «сход с рельсов поезда, взрыв на химкомбинате, пожары и даже крушения самолетов»</code> | <code>Произошли «сход ьс рельсов поезда, взрыв нза химкомбикнате, шпожары и даже крушения самолетов»</code> | <code>1.0</code> |
|
| 263 |
-
* Loss: [<code>MultipleNegativesRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters:
|
| 264 |
-
```json
|
| 265 |
-
{
|
| 266 |
-
"scale": 20.0,
|
| 267 |
-
"similarity_fct": "cos_sim",
|
| 268 |
-
"gather_across_devices": false
|
| 269 |
-
}
|
| 270 |
```
|
| 271 |
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
- `per_device_train_batch_size`: 8
|
| 287 |
-
- `per_device_eval_batch_size`: 8
|
| 288 |
-
- `per_gpu_train_batch_size`: None
|
| 289 |
-
- `per_gpu_eval_batch_size`: None
|
| 290 |
-
- `gradient_accumulation_steps`: 1
|
| 291 |
-
- `eval_accumulation_steps`: None
|
| 292 |
-
- `torch_empty_cache_steps`: None
|
| 293 |
-
- `learning_rate`: 5e-05
|
| 294 |
-
- `weight_decay`: 0.0
|
| 295 |
-
- `adam_beta1`: 0.9
|
| 296 |
-
- `adam_beta2`: 0.999
|
| 297 |
-
- `adam_epsilon`: 1e-08
|
| 298 |
-
- `max_grad_norm`: 1
|
| 299 |
-
- `num_train_epochs`: 1
|
| 300 |
-
- `max_steps`: -1
|
| 301 |
-
- `lr_scheduler_type`: linear
|
| 302 |
-
- `lr_scheduler_kwargs`: {}
|
| 303 |
-
- `warmup_ratio`: 0.0
|
| 304 |
-
- `warmup_steps`: 0
|
| 305 |
-
- `log_level`: passive
|
| 306 |
-
- `log_level_replica`: warning
|
| 307 |
-
- `log_on_each_node`: True
|
| 308 |
-
- `logging_nan_inf_filter`: True
|
| 309 |
-
- `save_safetensors`: True
|
| 310 |
-
- `save_on_each_node`: False
|
| 311 |
-
- `save_only_model`: False
|
| 312 |
-
- `restore_callback_states_from_checkpoint`: False
|
| 313 |
-
- `no_cuda`: False
|
| 314 |
-
- `use_cpu`: False
|
| 315 |
-
- `use_mps_device`: False
|
| 316 |
-
- `seed`: 42
|
| 317 |
-
- `data_seed`: None
|
| 318 |
-
- `jit_mode_eval`: False
|
| 319 |
-
- `bf16`: False
|
| 320 |
-
- `fp16`: True
|
| 321 |
-
- `fp16_opt_level`: O1
|
| 322 |
-
- `half_precision_backend`: auto
|
| 323 |
-
- `bf16_full_eval`: False
|
| 324 |
-
- `fp16_full_eval`: False
|
| 325 |
-
- `tf32`: None
|
| 326 |
-
- `local_rank`: 0
|
| 327 |
-
- `ddp_backend`: None
|
| 328 |
-
- `tpu_num_cores`: None
|
| 329 |
-
- `tpu_metrics_debug`: False
|
| 330 |
-
- `debug`: []
|
| 331 |
-
- `dataloader_drop_last`: False
|
| 332 |
-
- `dataloader_num_workers`: 0
|
| 333 |
-
- `dataloader_prefetch_factor`: None
|
| 334 |
-
- `past_index`: -1
|
| 335 |
-
- `disable_tqdm`: False
|
| 336 |
-
- `remove_unused_columns`: True
|
| 337 |
-
- `label_names`: None
|
| 338 |
-
- `load_best_model_at_end`: False
|
| 339 |
-
- `ignore_data_skip`: False
|
| 340 |
-
- `fsdp`: []
|
| 341 |
-
- `fsdp_min_num_params`: 0
|
| 342 |
-
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 343 |
-
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 344 |
-
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 345 |
-
- `parallelism_config`: None
|
| 346 |
-
- `deepspeed`: None
|
| 347 |
-
- `label_smoothing_factor`: 0.0
|
| 348 |
-
- `optim`: adamw_torch_fused
|
| 349 |
-
- `optim_args`: None
|
| 350 |
-
- `adafactor`: False
|
| 351 |
-
- `group_by_length`: False
|
| 352 |
-
- `length_column_name`: length
|
| 353 |
-
- `project`: huggingface
|
| 354 |
-
- `trackio_space_id`: trackio
|
| 355 |
-
- `ddp_find_unused_parameters`: None
|
| 356 |
-
- `ddp_bucket_cap_mb`: None
|
| 357 |
-
- `ddp_broadcast_buffers`: False
|
| 358 |
-
- `dataloader_pin_memory`: True
|
| 359 |
-
- `dataloader_persistent_workers`: False
|
| 360 |
-
- `skip_memory_metrics`: True
|
| 361 |
-
- `use_legacy_prediction_loop`: False
|
| 362 |
-
- `push_to_hub`: False
|
| 363 |
-
- `resume_from_checkpoint`: None
|
| 364 |
-
- `hub_model_id`: None
|
| 365 |
-
- `hub_strategy`: every_save
|
| 366 |
-
- `hub_private_repo`: None
|
| 367 |
-
- `hub_always_push`: False
|
| 368 |
-
- `hub_revision`: None
|
| 369 |
-
- `gradient_checkpointing`: False
|
| 370 |
-
- `gradient_checkpointing_kwargs`: None
|
| 371 |
-
- `include_inputs_for_metrics`: False
|
| 372 |
-
- `include_for_metrics`: []
|
| 373 |
-
- `eval_do_concat_batches`: True
|
| 374 |
-
- `fp16_backend`: auto
|
| 375 |
-
- `push_to_hub_model_id`: None
|
| 376 |
-
- `push_to_hub_organization`: None
|
| 377 |
-
- `mp_parameters`:
|
| 378 |
-
- `auto_find_batch_size`: False
|
| 379 |
-
- `full_determinism`: False
|
| 380 |
-
- `torchdynamo`: None
|
| 381 |
-
- `ray_scope`: last
|
| 382 |
-
- `ddp_timeout`: 1800
|
| 383 |
-
- `torch_compile`: False
|
| 384 |
-
- `torch_compile_backend`: None
|
| 385 |
-
- `torch_compile_mode`: None
|
| 386 |
-
- `include_tokens_per_second`: False
|
| 387 |
-
- `include_num_input_tokens_seen`: no
|
| 388 |
-
- `neftune_noise_alpha`: None
|
| 389 |
-
- `optim_target_modules`: None
|
| 390 |
-
- `batch_eval_metrics`: False
|
| 391 |
-
- `eval_on_start`: False
|
| 392 |
-
- `use_liger_kernel`: False
|
| 393 |
-
- `liger_kernel_config`: None
|
| 394 |
-
- `eval_use_gather_object`: False
|
| 395 |
-
- `average_tokens_across_devices`: True
|
| 396 |
-
- `prompts`: None
|
| 397 |
-
- `batch_sampler`: batch_sampler
|
| 398 |
-
- `multi_dataset_batch_sampler`: round_robin
|
| 399 |
-
- `router_mapping`: {}
|
| 400 |
-
- `learning_rate_mapping`: {}
|
| 401 |
-
|
| 402 |
-
</details>
|
| 403 |
-
|
| 404 |
-
### Training Logs
|
| 405 |
-
| Epoch | Step | Training Loss |
|
| 406 |
-
|:------:|:----:|:-------------:|
|
| 407 |
-
| 0.1667 | 500 | 0.0 |
|
| 408 |
-
| 0.3333 | 1000 | 0.0003 |
|
| 409 |
-
| 0.5 | 1500 | 0.0 |
|
| 410 |
-
| 0.6667 | 2000 | 0.0 |
|
| 411 |
-
| 0.8333 | 2500 | 0.0 |
|
| 412 |
-
| 1.0 | 3000 | 0.0 |
|
| 413 |
-
|
| 414 |
-
|
| 415 |
-
### Framework Versions
|
| 416 |
-
- Python: 3.12.12
|
| 417 |
-
- Sentence Transformers: 5.1.1
|
| 418 |
-
- Transformers: 4.57.1
|
| 419 |
-
- PyTorch: 2.8.0+cu126
|
| 420 |
-
- Accelerate: 1.10.1
|
| 421 |
-
- Datasets: 4.0.0
|
| 422 |
-
- Tokenizers: 0.22.1
|
| 423 |
|
| 424 |
## Citation
|
| 425 |
|
| 426 |
### BibTeX
|
| 427 |
|
| 428 |
-
####
|
|
|
|
| 429 |
```bibtex
|
| 430 |
-
@inproceedings{
|
| 431 |
-
title = "
|
| 432 |
-
author = "
|
| 433 |
-
|
| 434 |
-
|
| 435 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 436 |
publisher = "Association for Computational Linguistics",
|
| 437 |
-
url = "https://
|
|
|
|
|
|
|
|
|
|
| 438 |
}
|
| 439 |
```
|
| 440 |
|
| 441 |
-
####
|
|
|
|
| 442 |
```bibtex
|
| 443 |
-
@
|
| 444 |
-
|
| 445 |
-
|
| 446 |
-
|
| 447 |
-
|
| 448 |
-
|
| 449 |
-
primaryClass={cs.CL}
|
| 450 |
}
|
| 451 |
```
|
| 452 |
|
| 453 |
-
|
| 454 |
-
## Glossary
|
| 455 |
|
| 456 |
-
|
| 457 |
-
-->
|
| 458 |
|
| 459 |
-
|
| 460 |
-
## Model Card Authors
|
| 461 |
|
| 462 |
-
|
| 463 |
-
-->
|
| 464 |
|
| 465 |
-
|
| 466 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 467 |
|
| 468 |
-
|
| 469 |
-
|
|
|
|
|
|
| 2 |
tags:
|
| 3 |
- sentence-transformers
|
| 4 |
- sentence-similarity
|
| 5 |
+
- dataset_size:120000
|
| 6 |
+
- multilingual
|
| 7 |
+
base_model: Alibaba-NLP/gte-multilingual-base
|
|
|
|
|
|
|
|
|
|
| 8 |
widget:
|
| 9 |
+
- source_sentence: Who is filming along?
|
| 10 |
sentences:
|
| 11 |
+
- Wién filmt mat?
|
| 12 |
+
- >-
|
| 13 |
+
Weider huet den Tatarescu drop higewisen, datt Rumänien durch seng
|
| 14 |
+
krichsbedélegong op de 6eite vun den allie'erten 110.000 mann verluer hätt.
|
| 15 |
+
- Brambilla 130.08.03 St.
|
| 16 |
+
- source_sentence: 'Four potential scenarios could still play out: Jean Asselborn.'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
sentences:
|
| 18 |
+
- >-
|
| 19 |
+
Dann ass nach eng Antenne hei um Kierchbierg virgesi Richtung RTL Gebai, do
|
| 20 |
+
gëtt jo een ganz neie Wunnquartier gebaut.
|
| 21 |
+
- >-
|
| 22 |
+
D'bedélegong un de wählen wir ganz stärk gewiéscht a munche ge'genden wor re
|
| 23 |
+
eso'gucr me' we' 90 prozent.
|
| 24 |
+
- Jean Asselborn gesäit 4 Méiglechkeeten, wéi et kéint virugoen.
|
| 25 |
+
- source_sentence: >-
|
| 26 |
+
Non-profit organisation Passerell, which provides legal council to refugees
|
| 27 |
+
in Luxembourg, announced that it has to make four employees redundant in
|
| 28 |
+
August due to a lack of funding.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
sentences:
|
| 30 |
+
- Oetringen nach Remich....8.20» 215»
|
| 31 |
+
- >-
|
| 32 |
+
D'ASBL Passerell, déi sech ëm d'Berodung vu Refugiéeën a Saache Rechtsfroe
|
| 33 |
+
këmmert, wäert am August mussen hir véier fix Salariéen entloossen.
|
| 34 |
+
- D'Regierung huet allerdéngs "just" 180.041 Doudeger verzeechent.
|
| 35 |
+
- source_sentence: This regulation was temporarily lifted during the Covid pandemic.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 36 |
sentences:
|
| 37 |
+
- Six Jours vu New-York si fir d’équipe Girgetti — Debacco
|
| 38 |
+
- Dës Reegelung gouf wärend der Covid-Pandemie ausgesat.
|
| 39 |
+
- ING-Marathon ouni gréisser Tëschefäll ofgelaf - 18 Leit hospitaliséiert.
|
| 40 |
+
- source_sentence: The cross-border workers should also receive more wages.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
sentences:
|
| 42 |
+
- D'grenzarbechetr missten och me' lo'n kre'en.
|
| 43 |
+
- >-
|
| 44 |
+
De Néckel: Firun! Dât ass jo ailes, wèll 't get dach neischt un der Bréck
|
| 45 |
+
gemâcht!
|
| 46 |
+
- >-
|
| 47 |
+
D'Grande-Duchesse Josephine Charlotte an hir Ministeren hunn d'Land
|
| 48 |
+
verlooss, et war den Optakt vun der Zäit am Exil.
|
| 49 |
pipeline_tag: sentence-similarity
|
| 50 |
library_name: sentence-transformers
|
| 51 |
+
model-index:
|
| 52 |
+
- name: >-
|
| 53 |
+
SentenceTransformer based on
|
| 54 |
+
Alibaba-NLP/gte-multilingual-base
|
| 55 |
+
results:
|
| 56 |
+
- task:
|
| 57 |
+
type: contemporary-lb
|
| 58 |
+
name: Contemporary-lb
|
| 59 |
+
dataset:
|
| 60 |
+
name: Contemporary-lb
|
| 61 |
+
type: contemporary-lb
|
| 62 |
+
metrics:
|
| 63 |
+
- type: accuracy
|
| 64 |
+
value: 0.6216
|
| 65 |
+
name: SIB-200(LB) accuracy
|
| 66 |
+
- type: accuracy
|
| 67 |
+
value: 0.6282
|
| 68 |
+
name: ParaLUX accuracy
|
| 69 |
+
- task:
|
| 70 |
+
type: bitext-mining
|
| 71 |
+
name: LBHistoricalBitextMining
|
| 72 |
+
dataset:
|
| 73 |
+
name: LBHistoricalBitextMining
|
| 74 |
+
type: lb-en
|
| 75 |
+
metrics:
|
| 76 |
+
- type: accuracy
|
| 77 |
+
value: 0.9683
|
| 78 |
+
name: LB<->FR accuracy
|
| 79 |
+
- type: accuracy
|
| 80 |
+
value: 0.9715
|
| 81 |
+
name: LB<->EN accuracy
|
| 82 |
+
- type: mean_accuracy
|
| 83 |
+
value: 0.9793
|
| 84 |
+
name: LB<->DE accuracy
|
| 85 |
+
license: agpl-3.0
|
| 86 |
+
datasets:
|
| 87 |
+
- impresso-project/HistLuxAlign
|
| 88 |
+
- fredxlpy/LuxAlign
|
| 89 |
+
language:
|
| 90 |
+
- lb
|
| 91 |
---
|
| 92 |
|
| 93 |
+
# Luxembourgish adaptation of Alibaba-NLP/gte-multilingual-base
|
| 94 |
+
|
| 95 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) further adapted to support Historical and Contemporary Luxembourgish. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for (cross-lingual) semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 96 |
|
|
|
|
| 97 |
|
| 98 |
## Model Details
|
| 99 |
|
| 100 |
+
This model is specialised to perform cross-lingual semantic search to and from Historical/Contemporary Luxembourgish. This model would be particularly useful for libraries and archives that want to perform semantic search and longitudinal studies within their collections.
|
| 101 |
+
|
| 102 |
+
This is an [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base) model that was further adapted by (Michail et al., 2025)
|
| 103 |
+
|
| 104 |
+
## Limitations
|
| 105 |
+
|
| 106 |
+
We also release a model that performs better (18pp) on ParaLUX. If finding monolingual exact matches within adversarial collections is of at-most importance, please use [histlux-paraphrase-multilingual-mpnet-base-v2](https://huggingface.co/impresso-project/histlux-paraphrase-multilingual-mpnet-base-v2)
|
| 107 |
+
|
| 108 |
### Model Description
|
| 109 |
+
- **Model Type:** GTE-Multilingual-Base
|
| 110 |
+
- **Base model:** [Alibaba-NLP/gte-multilingual-base](https://huggingface.co/Alibaba-NLP/gte-multilingual-base)
|
| 111 |
- **Maximum Sequence Length:** 8192 tokens
|
| 112 |
- **Output Dimensionality:** 768 dimensions
|
| 113 |
- **Similarity Function:** Cosine Similarity
|
| 114 |
+
- **Training Dataset:** See below
|
|
|
|
|
|
|
| 115 |
|
|
|
|
| 116 |
|
| 117 |
+
## Usage (Sentence-Transformers)
|
|
|
|
|
|
|
| 118 |
|
| 119 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
| 120 |
|
| 121 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
pip install -U sentence-transformers
|
| 123 |
```
|
| 124 |
|
| 125 |
+
Then you can use the model like this:
|
| 126 |
+
|
| 127 |
```python
|
| 128 |
from sentence_transformers import SentenceTransformer
|
| 129 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
| 130 |
|
| 131 |
+
model = SentenceTransformer('impresso-project/halloween_workshop_ocr_robust_with_lux_preview', trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 132 |
embeddings = model.encode(sentences)
|
| 133 |
+
print(embeddings)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 134 |
```
|
| 135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
+
## Training Details
|
|
|
|
| 138 |
|
| 139 |
+
### Training Dataset
|
|
|
|
| 140 |
|
| 141 |
+
The parallel sentences data mix is the following:
|
|
|
|
| 142 |
|
| 143 |
+
impresso-project/HistLuxAlign:
|
| 144 |
+
- LB-FR (x20,000)
|
| 145 |
+
- LB-EN (x20,000)
|
| 146 |
+
- LB-DE (x20,000)
|
| 147 |
|
| 148 |
+
fredxlpy/LuxAlign:
|
| 149 |
+
- LB-FR (x40,000)
|
| 150 |
+
- LB-EN (x20,000)
|
| 151 |
|
| 152 |
+
Total: 120 000 Sentence pairs in mixed batches of size 8
|
|
|
|
| 153 |
|
|
|
|
| 154 |
|
| 155 |
+
### Contrastive Training
|
| 156 |
+
The model was trained with the parameters:
|
| 157 |
+
```
|
| 158 |
+
**Loss**:
|
| 159 |
|
| 160 |
+
`sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss` with parameters:
|
| 161 |
+
```
|
| 162 |
+
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 163 |
```
|
| 164 |
|
| 165 |
+
Parameters of the fit()-Method:
|
| 166 |
+
```
|
| 167 |
+
{
|
| 168 |
+
"epochs": 1,
|
| 169 |
+
"evaluation_steps": 520,
|
| 170 |
+
"max_grad_norm": 1,
|
| 171 |
+
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
| 172 |
+
"optimizer_params": {
|
| 173 |
+
"lr": 2e-05
|
| 174 |
+
},
|
| 175 |
+
"scheduler": "WarmupLinear",
|
| 176 |
+
}
|
| 177 |
+
```
|
| 178 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
|
| 180 |
## Citation
|
| 181 |
|
| 182 |
### BibTeX
|
| 183 |
|
| 184 |
+
#### Adapting Multilingual Embedding Models to Historical Luxembourgish (introducing paper)
|
| 185 |
+
|
| 186 |
```bibtex
|
| 187 |
+
@inproceedings{michail-etal-2025-adapting,
|
| 188 |
+
title = "Adapting Multilingual Embedding Models to Historical {L}uxembourgish",
|
| 189 |
+
author = "Michail, Andrianos and
|
| 190 |
+
Racl{\'e}, Corina and
|
| 191 |
+
Opitz, Juri and
|
| 192 |
+
Clematide, Simon",
|
| 193 |
+
editor = "Kazantseva, Anna and
|
| 194 |
+
Szpakowicz, Stan and
|
| 195 |
+
Degaetano-Ortlieb, Stefania and
|
| 196 |
+
Bizzoni, Yuri and
|
| 197 |
+
Pagel, Janis",
|
| 198 |
+
booktitle = "Proceedings of the 9th Joint SIGHUM Workshop on Computational Linguistics for Cultural Heritage, Social Sciences, Humanities and Literature (LaTeCH-CLfL 2025)",
|
| 199 |
+
month = may,
|
| 200 |
+
year = "2025",
|
| 201 |
+
address = "Albuquerque, New Mexico",
|
| 202 |
publisher = "Association for Computational Linguistics",
|
| 203 |
+
url = "https://aclanthology.org/2025.latechclfl-1.26/",
|
| 204 |
+
doi = "10.18653/v1/2025.latechclfl-1.26",
|
| 205 |
+
pages = "291--298",
|
| 206 |
+
ISBN = "979-8-89176-241-1"
|
| 207 |
}
|
| 208 |
```
|
| 209 |
|
| 210 |
+
#### Original Multilingual GTE Model
|
| 211 |
+
|
| 212 |
```bibtex
|
| 213 |
+
@inproceedings{zhang2024mgte,
|
| 214 |
+
title={mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval},
|
| 215 |
+
author={Zhang, Xin and Zhang, Yanzhao and Long, Dingkun and Xie, Wen and Dai, Ziqi and Tang, Jialong and Lin, Huan and Yang, Baosong and Xie, Pengjun and Huang, Fei and others},
|
| 216 |
+
booktitle={Proceedings of the 2024 Conference on Empirical Methods in Natural Language Processing: Industry Track},
|
| 217 |
+
pages={1393--1412},
|
| 218 |
+
year={2024}
|
|
|
|
| 219 |
}
|
| 220 |
```
|
| 221 |
|
| 222 |
+
## About Impresso
|
|
|
|
| 223 |
|
| 224 |
+
### Impresso project
|
|
|
|
| 225 |
|
| 226 |
+
[Impresso - Media Monitoring of the Past](https://impresso-project.ch) is an interdisciplinary research project that aims to develop and consolidate tools for processing and exploring large collections of media archives across modalities, time, languages and national borders. The first project (2017-2021) was funded by the Swiss National Science Foundation under grant No. [CRSII5_173719](http://p3.snf.ch/project-173719) and the second project (2023-2027) by the SNSF under grant No. [CRSII5_213585](https://data.snf.ch/grants/grant/213585) and the Luxembourg National Research Fund under grant No. 17498891.
|
|
|
|
| 227 |
|
| 228 |
+
### Copyright
|
|
|
|
| 229 |
|
| 230 |
+
Copyright (C) 2025 The Impresso team.
|
| 231 |
+
|
| 232 |
+
### License
|
| 233 |
+
|
| 234 |
+
This program is provided as open source under the [GNU Affero General Public License](https://github.com/impresso/impresso-pyindexation/blob/master/LICENSE) v3 or later.
|
| 235 |
+
|
| 236 |
+
---
|
| 237 |
|
| 238 |
+
<p align="center">
|
| 239 |
+
<img src="https://github.com/impresso/impresso.github.io/blob/master/assets/images/3x1--Yellow-Impresso-Black-on-White--transparent.png?raw=true" width="350" alt="Impresso Project Logo"/>
|
| 240 |
+
</p>
|