File size: 1,388 Bytes
18b7602 8a2a9de 18b7602 8a2a9de 18b7602 8a2a9de 18b7602 8a2a9de 18b7602 8a2a9de 18b7602 8a2a9de 18b7602 8a2a9de 18b7602 8a2a9de 18b7602 8a2a9de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
---
license: apache-2.0
tags:
- tinyllama
- toneop
- lora
- fine-tuning
- health-chatbot
- conversational
---
# 🧠 TinyLLaMA-ToneOpBot (LoRA Adapter)
This is a lightweight fine-tuned **TinyLLaMA-1.1B-Chat** model using **LoRA adapters** for health and fitness Q&A, built by [@imrahulwarkade](https://huggingface.co/imrahulwarkade).
> Designed for commercial chatbot applications focused on wellness, diet, and healthy lifestyle.
---
## 🧪 Base Model
- [`TinyLlama/TinyLlama-1.1B-Chat-v1.0`](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0)
---
## 🧰 How to Use (with PEFT)
```python
from transformers import AutoTokenizer, pipeline
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM
# Load adapter
adapter_id = "imrahulwarkade/tinyllama-toneopbot-lora"
config = PeftConfig.from_pretrained(adapter_id)
base_model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path)
model = PeftModel.from_pretrained(base_model, adapter_id)
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
# Prompt
messages = [
{"role": "user", "content": "How can I lose weight in a healthy way?"}
]
prompt = tokenizer.apply_chat_template(messages, tokenize=False)
response = pipe(prompt, max_new_tokens=150)[0]["generated_text"]
print(response) |