--- license: apache-2.0 tags: - tinyllama - toneop - lora - fine-tuning - health-chatbot - conversational --- # 🧠 TinyLLaMA-ToneOpBot (LoRA Adapter) This is a lightweight fine-tuned **TinyLLaMA-1.1B-Chat** model using **LoRA adapters** for health and fitness Q&A, built by [@imrahulwarkade](https://huggingface.co/imrahulwarkade). > Designed for commercial chatbot applications focused on wellness, diet, and healthy lifestyle. --- ## 🧪 Base Model - [`TinyLlama/TinyLlama-1.1B-Chat-v1.0`](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) --- ## 🧰 How to Use (with PEFT) ```python from transformers import AutoTokenizer, pipeline from peft import PeftModel, PeftConfig from transformers import AutoModelForCausalLM # Load adapter adapter_id = "imrahulwarkade/tinyllama-toneopbot-lora" config = PeftConfig.from_pretrained(adapter_id) base_model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path) model = PeftModel.from_pretrained(base_model, adapter_id) tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) pipe = pipeline("text-generation", model=model, tokenizer=tokenizer) # Prompt messages = [ {"role": "user", "content": "How can I lose weight in a healthy way?"} ] prompt = tokenizer.apply_chat_template(messages, tokenize=False) response = pipe(prompt, max_new_tokens=150)[0]["generated_text"] print(response)