yuhangzang commited on
Commit
de50c12
ยท
verified ยท
1 Parent(s): 63ee32a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +26 -26
README.md CHANGED
@@ -13,7 +13,7 @@ datasets:
13
  - svamp
14
  - multi_arith
15
  model-index:
16
- - name: SIM_COT-LLaMA3-CODI-8B
17
  results:
18
  - task:
19
  type: math-word-problems
@@ -44,7 +44,7 @@ model-index:
44
  value: xx.x
45
  ---
46
 
47
- # ๐Ÿš€ SIM_COT-LLaMA3-CODI-8B
48
 
49
  [![๐Ÿค— Model Repo](https://img.shields.io/badge/HuggingFace-Model-blue)](https://huggingface.co/internlm/SIM_COT-LLaMA3-CODI-8B)
50
  [![๐Ÿ“‚ GitHub](https://img.shields.io/badge/Code-GitHub-black?logo=github)](https://github.com/InternLM/SIM-CoT)
@@ -66,7 +66,7 @@ Empirical results demonstrate that SIM-CoT substantially improves both **in-doma
66
 
67
  ---
68
 
69
- **SIM_COT-LLaMA3-CODI-8B** is a large implicit language model based on **Meta LLaMA-3.1-8B-Instruct**, fine-tuned with **SIM-CoT (Supervised Implicit Chain-of-Thought)** on top of the **CODI latent reasoning framework**.
70
  It is designed to improve โœจ *implicit reasoning* and ๐Ÿงฎ *arithmetic multi-step problem solving* across benchmarks such as **GSM8K, GSM-Hard, MultiArith, and SVAMP**.
71
 
72
  ---
@@ -98,9 +98,9 @@ We evaluate **SIM-CoT** across both **in-domain** (GSM8K-Aug) and **out-of-domai
98
 
99
  ## ๐Ÿ“Œ Model Details
100
 
101
- - ๐Ÿ—๏ธ **Base model**: [LLaMA-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct)
102
  - โšก **Fine-tuning method**: LoRA (r=128, alpha=32)
103
- - ๐Ÿ”‘ **Latent reasoning**: 6 latent steps, projection dimension = 4096
104
  - ๐ŸŽฏ **Dropout**: 0.0 (projection layer)
105
  - ๐Ÿ–ฅ๏ธ **Precision**: bf16
106
  - ๐Ÿ“ **Context length**: 512 tokens
@@ -132,32 +132,32 @@ cd SIM-CoT/CODI
132
 
133
  ### 2. Run the evaluation script
134
  We provide shell scripts for different backbones and datasets.
135
- For example, to evaluate on **LLaMA-3.1 8B** with the **SVAMP** dataset, run:
136
  ```
137
- bash test_llama8b.sh
138
  ```
139
  This will internally call the following command:
140
  ```
141
  python test.py \
142
- --data_name "svamp" \
143
- --output_dir "$SAVE_DIR" \
144
- --model_name_or_path path/to/Llama-3.1-8B-Instruct \
145
- --seed 11 \
146
- --model_max_length 512 \
147
- --bf16 \
148
- --lora_r 128 --lora_alpha 32 --lora_init \
149
- --batch_size 128 \
150
- --greedy True \
151
- --num_latent 6 \
152
- --use_prj True \
153
- --prj_dim 4096 \
154
- --prj_no_ln False \
155
- --prj_dropout 0.0 \
156
- --inf_latent_iterations 6 \
157
- --inf_num_iterations 1 \
158
- --remove_eos True \
159
- --use_lora True \
160
- --ckpt_dir path/to/sim_cot-checkpoints
161
  ```
162
  ### 3. Expected output
163
  After running, the script will print the evaluation summary.
 
13
  - svamp
14
  - multi_arith
15
  model-index:
16
+ - name: SIM_COT-LLaMA3-CODI-1B
17
  results:
18
  - task:
19
  type: math-word-problems
 
44
  value: xx.x
45
  ---
46
 
47
+ # ๐Ÿš€ SIM_COT-LLaMA3-CODI-1B
48
 
49
  [![๐Ÿค— Model Repo](https://img.shields.io/badge/HuggingFace-Model-blue)](https://huggingface.co/internlm/SIM_COT-LLaMA3-CODI-8B)
50
  [![๐Ÿ“‚ GitHub](https://img.shields.io/badge/Code-GitHub-black?logo=github)](https://github.com/InternLM/SIM-CoT)
 
66
 
67
  ---
68
 
69
+ **SIM_COT-LLaMA3-CODI-1B** is a large implicit language model based on **Meta LLaMA-3.2-1B-Instruct**, fine-tuned with **SIM-CoT (Supervised Implicit Chain-of-Thought)** on top of the **CODI latent reasoning framework**.
70
  It is designed to improve โœจ *implicit reasoning* and ๐Ÿงฎ *arithmetic multi-step problem solving* across benchmarks such as **GSM8K, GSM-Hard, MultiArith, and SVAMP**.
71
 
72
  ---
 
98
 
99
  ## ๐Ÿ“Œ Model Details
100
 
101
+ - ๐Ÿ—๏ธ **Base model**: [LLaMA-3.2-1B-Instruct](https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct)
102
  - โšก **Fine-tuning method**: LoRA (r=128, alpha=32)
103
+ - ๐Ÿ”‘ **Latent reasoning**: 6 latent steps, projection dimension = 2048
104
  - ๐ŸŽฏ **Dropout**: 0.0 (projection layer)
105
  - ๐Ÿ–ฅ๏ธ **Precision**: bf16
106
  - ๐Ÿ“ **Context length**: 512 tokens
 
132
 
133
  ### 2. Run the evaluation script
134
  We provide shell scripts for different backbones and datasets.
135
+ For example, to evaluate on **LLaMA-3.2 1B** with the **SVAMP** dataset, run:
136
  ```
137
+ bash test_llama1b.sh
138
  ```
139
  This will internally call the following command:
140
  ```
141
  python test.py \
142
+ --data_name "svamp" \
143
+ --output_dir "$SAVE_DIR" \
144
+ --model_name_or_path path/to/Llama-3.2-1B-Instruct \
145
+ --seed 11 \
146
+ --model_max_length 512 \
147
+ --bf16 \
148
+ --lora_r 128 --lora_alpha 32 --lora_init \
149
+ --batch_size 128 \
150
+ --greedy True \
151
+ --num_latent 6 \
152
+ --use_prj True \
153
+ --prj_dim 2048 \
154
+ --prj_no_ln False \
155
+ --prj_dropout 0.0 \
156
+ --inf_latent_iterations 6 \
157
+ --inf_num_iterations 1 \
158
+ --remove_eos True \
159
+ --use_lora True \
160
+ --ckpt_dir path/to/sim_cot-checkpoints
161
  ```
162
  ### 3. Expected output
163
  After running, the script will print the evaluation summary.