|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | """Tokenization classes for InternLM.""" | 
					
						
						|  | import os | 
					
						
						|  | from shutil import copyfile | 
					
						
						|  | from typing import Any, Dict, List, Optional, Tuple | 
					
						
						|  |  | 
					
						
						|  | import sentencepiece as spm | 
					
						
						|  | from transformers.tokenization_utils import PreTrainedTokenizer | 
					
						
						|  | from transformers.utils import logging | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  | VOCAB_FILES_NAMES = {"vocab_file": "./tokenizer.model"} | 
					
						
						|  |  | 
					
						
						|  | PRETRAINED_VOCAB_FILES_MAP = {} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class InternLM2Tokenizer(PreTrainedTokenizer): | 
					
						
						|  | """ | 
					
						
						|  | Construct a InternLM2 tokenizer. Based on byte-level Byte-Pair-Encoding. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | vocab_file (`str`): | 
					
						
						|  | Path to the vocabulary file. | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | vocab_files_names = VOCAB_FILES_NAMES | 
					
						
						|  | pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP | 
					
						
						|  | model_input_names = ["input_ids", "attention_mask"] | 
					
						
						|  | _auto_class = "AutoTokenizer" | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | vocab_file, | 
					
						
						|  | unk_token="<unk>", | 
					
						
						|  | bos_token="<s>", | 
					
						
						|  | eos_token="</s>", | 
					
						
						|  | pad_token="</s>", | 
					
						
						|  | sp_model_kwargs: Optional[Dict[str, Any]] = None, | 
					
						
						|  | add_bos_token=True, | 
					
						
						|  | add_eos_token=False, | 
					
						
						|  | decode_with_prefix_space=False, | 
					
						
						|  | clean_up_tokenization_spaces=False, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ): | 
					
						
						|  | self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs | 
					
						
						|  | self.vocab_file = vocab_file | 
					
						
						|  | self.add_bos_token = add_bos_token | 
					
						
						|  | self.add_eos_token = add_eos_token | 
					
						
						|  | self.decode_with_prefix_space = decode_with_prefix_space | 
					
						
						|  | self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs) | 
					
						
						|  | self.sp_model.Load(vocab_file) | 
					
						
						|  | self._no_prefix_space_tokens = None | 
					
						
						|  | super().__init__( | 
					
						
						|  | bos_token=bos_token, | 
					
						
						|  | eos_token=eos_token, | 
					
						
						|  | unk_token=unk_token, | 
					
						
						|  | pad_token=pad_token, | 
					
						
						|  | clean_up_tokenization_spaces=clean_up_tokenization_spaces, | 
					
						
						|  | **kwargs, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def no_prefix_space_tokens(self): | 
					
						
						|  | if self._no_prefix_space_tokens is None: | 
					
						
						|  | vocab = self.convert_ids_to_tokens(list(range(self.vocab_size))) | 
					
						
						|  | self._no_prefix_space_tokens = {i for i, tok in enumerate(vocab) if not tok.startswith("▁")} | 
					
						
						|  | return self._no_prefix_space_tokens | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def vocab_size(self): | 
					
						
						|  | """Returns vocab size""" | 
					
						
						|  | return self.sp_model.get_piece_size() | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def bos_token_id(self) -> Optional[int]: | 
					
						
						|  | return self.sp_model.bos_id() | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def eos_token_id(self) -> Optional[int]: | 
					
						
						|  | return self.sp_model.eos_id() | 
					
						
						|  |  | 
					
						
						|  | def get_vocab(self): | 
					
						
						|  | """Returns vocab as a dict""" | 
					
						
						|  | vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)} | 
					
						
						|  | vocab.update(self.added_tokens_encoder) | 
					
						
						|  | return vocab | 
					
						
						|  |  | 
					
						
						|  | def _tokenize(self, text): | 
					
						
						|  | """Returns a tokenized string.""" | 
					
						
						|  | return self.sp_model.encode(text, out_type=str) | 
					
						
						|  |  | 
					
						
						|  | def _convert_token_to_id(self, token): | 
					
						
						|  | """Converts a token (str) in an id using the vocab.""" | 
					
						
						|  | return self.sp_model.piece_to_id(token) | 
					
						
						|  |  | 
					
						
						|  | def _convert_id_to_token(self, index): | 
					
						
						|  | """Converts an index (integer) in a token (str) using the vocab.""" | 
					
						
						|  | token = self.sp_model.IdToPiece(index) | 
					
						
						|  | return token | 
					
						
						|  |  | 
					
						
						|  | def _maybe_add_prefix_space(self, tokens, decoded): | 
					
						
						|  | if tokens and tokens[0] not in self.no_prefix_space_tokens: | 
					
						
						|  | return " " + decoded | 
					
						
						|  | else: | 
					
						
						|  | return decoded | 
					
						
						|  |  | 
					
						
						|  | def convert_tokens_to_string(self, tokens): | 
					
						
						|  | """Converts a sequence of tokens (string) in a single string.""" | 
					
						
						|  | current_sub_tokens = [] | 
					
						
						|  | out_string = "" | 
					
						
						|  | prev_is_special = False | 
					
						
						|  | for token in tokens: | 
					
						
						|  |  | 
					
						
						|  | if token in self.all_special_tokens: | 
					
						
						|  | if not prev_is_special: | 
					
						
						|  | out_string += " " | 
					
						
						|  | out_string += self.sp_model.decode(current_sub_tokens) + token | 
					
						
						|  | prev_is_special = True | 
					
						
						|  | current_sub_tokens = [] | 
					
						
						|  | else: | 
					
						
						|  | current_sub_tokens.append(token) | 
					
						
						|  | prev_is_special = False | 
					
						
						|  | out_string += self.sp_model.decode(current_sub_tokens) | 
					
						
						|  | out_string = self.clean_up_tokenization(out_string) | 
					
						
						|  | out_string = self._maybe_add_prefix_space(tokens=tokens, decoded=out_string) | 
					
						
						|  | return out_string[1:] | 
					
						
						|  |  | 
					
						
						|  | def save_vocabulary(self, save_directory, filename_prefix: Optional[str] = None) -> Tuple[str]: | 
					
						
						|  | """ | 
					
						
						|  | Save the vocabulary and special tokens file to a directory. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | save_directory (`str`): | 
					
						
						|  | The directory in which to save the vocabulary. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `Tuple(str)`: Paths to the files saved. | 
					
						
						|  | """ | 
					
						
						|  | if not os.path.isdir(save_directory): | 
					
						
						|  | logger.error(f"Vocabulary path ({save_directory}) should be a directory") | 
					
						
						|  | return | 
					
						
						|  | out_vocab_file = os.path.join( | 
					
						
						|  | save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if os.path.abspath(self.vocab_file) != os.path.abspath(out_vocab_file) and os.path.isfile(self.vocab_file): | 
					
						
						|  | copyfile(self.vocab_file, out_vocab_file) | 
					
						
						|  | elif not os.path.isfile(self.vocab_file): | 
					
						
						|  | with open(out_vocab_file, "wb") as fi: | 
					
						
						|  | content_spiece_model = self.sp_model.serialized_model_proto() | 
					
						
						|  | fi.write(content_spiece_model) | 
					
						
						|  |  | 
					
						
						|  | return (out_vocab_file,) | 
					
						
						|  |  | 
					
						
						|  | def build_inputs_with_special_tokens(self, token_ids_0, token_ids_1=None): | 
					
						
						|  | if self.add_bos_token: | 
					
						
						|  | bos_token_ids = [self.bos_token_id] | 
					
						
						|  | else: | 
					
						
						|  | bos_token_ids = [] | 
					
						
						|  |  | 
					
						
						|  | output = bos_token_ids + token_ids_0 | 
					
						
						|  |  | 
					
						
						|  | if token_ids_1 is not None: | 
					
						
						|  | output = output + token_ids_1 | 
					
						
						|  |  | 
					
						
						|  | if self.add_eos_token: | 
					
						
						|  | output = output + [self.eos_token_id] | 
					
						
						|  |  | 
					
						
						|  | return output | 
					
						
						|  |  | 
					
						
						|  | def get_special_tokens_mask( | 
					
						
						|  | self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False | 
					
						
						|  | ) -> List[int]: | 
					
						
						|  | """ | 
					
						
						|  | Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding | 
					
						
						|  | special tokens using the tokenizer `prepare_for_model` method. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | token_ids_0 (`List[int]`): | 
					
						
						|  | List of IDs. | 
					
						
						|  | token_ids_1 (`List[int]`, *optional*): | 
					
						
						|  | Optional second list of IDs for sequence pairs. | 
					
						
						|  | already_has_special_tokens (`bool`, *optional*, defaults to `False`): | 
					
						
						|  | Whether or not the token list is already formatted with special tokens for the model. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. | 
					
						
						|  | """ | 
					
						
						|  | if already_has_special_tokens: | 
					
						
						|  | return super().get_special_tokens_mask( | 
					
						
						|  | token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if token_ids_1 is None: | 
					
						
						|  | return [1] + ([0] * len(token_ids_0)) + [1] | 
					
						
						|  | return [1] + ([0] * len(token_ids_0)) + [1, 1] + ([0] * len(token_ids_1)) + [1] | 
					
						
						|  |  | 
					
						
						|  | def create_token_type_ids_from_sequences( | 
					
						
						|  | self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None | 
					
						
						|  | ) -> List[int]: | 
					
						
						|  | """ | 
					
						
						|  | Create a mask from the two sequences passed to be used in a sequence-pair classification task. T5 does not make | 
					
						
						|  | use of token type ids, therefore a list of zeros is returned. | 
					
						
						|  |  | 
					
						
						|  | Args: | 
					
						
						|  | token_ids_0 (`List[int]`): | 
					
						
						|  | List of IDs. | 
					
						
						|  | token_ids_1 (`List[int]`, *optional*): | 
					
						
						|  | Optional second list of IDs for sequence pairs. | 
					
						
						|  |  | 
					
						
						|  | Returns: | 
					
						
						|  | `List[int]`: List of zeros. | 
					
						
						|  | """ | 
					
						
						|  | eos = [self.eos_token_id] | 
					
						
						|  |  | 
					
						
						|  | if token_ids_1 is None: | 
					
						
						|  | return len(token_ids_0 + eos) * [0] | 
					
						
						|  | return len(token_ids_0 + eos + token_ids_1 + eos) * [0] | 
					
						
						|  |  |