IvA
commited on
Commit
·
7cf31e7
1
Parent(s):
db6d15c
fx
Browse files- .gitattributes +2 -0
- README.md +415 -3
- config.json +2 -97
- true.wav +3 -0
- video.mp4 +3 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
true.wav filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
video.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
CHANGED
|
@@ -1,3 +1,415 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: cc-by-4.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: cc-by-4.0
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
tags:
|
| 6 |
+
- audio
|
| 7 |
+
- speech
|
| 8 |
+
- tokenizer
|
| 9 |
+
- vocoder
|
| 10 |
+
base_model:
|
| 11 |
+
- kyutai/mimi
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
## Attentionless VOcoder Streaming
|
| 16 |
+
|
| 17 |
+
<video width="1280" height="720" controls style="box-shadow: 0px 0px 20px 10px rgba(0, 0, 0, 0.05), 0px 1px 3px 10px rgba(255, 255, 255, 0.05);">
|
| 18 |
+
<source src="https://huggingface.co/ivao0/_AvoS/resolve/main/video.mp4" type="video/mp4">
|
| 19 |
+
Your browser does not support the video tag.
|
| 20 |
+
</video>
|
| 21 |
+
|
| 22 |
+
## Usage
|
| 23 |
+
|
| 24 |
+
```python
|
| 25 |
+
from huggingface_hub import hf_hub_download
|
| 26 |
+
import soundfile
|
| 27 |
+
import torch
|
| 28 |
+
from transformers import Wav2Vec2PreTrainedModel, PretrainedConfig
|
| 29 |
+
from torch import nn
|
| 30 |
+
import torch.nn.functional as F
|
| 31 |
+
|
| 32 |
+
|
| 33 |
+
|
| 34 |
+
class Voc(Wav2Vec2PreTrainedModel):
|
| 35 |
+
|
| 36 |
+
'''For using different batch_siz -> Voc._flush()
|
| 37 |
+
'''
|
| 38 |
+
|
| 39 |
+
def __init__(self,
|
| 40 |
+
config=PretrainedConfig(), n_q=18):
|
| 41 |
+
|
| 42 |
+
super().__init__(config=config)
|
| 43 |
+
self.encoder_transformer = VocTransformer()
|
| 44 |
+
self.decoder_transformer = VocTransformer()
|
| 45 |
+
self.encoder = SEANetEncoder()
|
| 46 |
+
self.decoder = SEANetDecoder()
|
| 47 |
+
self.sample_rate = 24000
|
| 48 |
+
self.quantizer = SplitResidualVectorQuantizer(n_q=n_q)
|
| 49 |
+
self.downsample = BufferConv1d(512, 512, kernel_size=4, stride=2, groups=1, bias=False)
|
| 50 |
+
upsample_channel_wise_bug = True
|
| 51 |
+
self.upsample = BufferConvTranspose1d(512, 512, kernel_size=4,
|
| 52 |
+
groups=512 if upsample_channel_wise_bug else 1,
|
| 53 |
+
stride=2, bias=False)
|
| 54 |
+
self.frame_rate = 12.5
|
| 55 |
+
self.encode_buffer = None # holds raw audio chunk if incomplete < 1920 samples
|
| 56 |
+
|
| 57 |
+
@torch.no_grad()
|
| 58 |
+
def _flush(self):
|
| 59 |
+
'''stream buffers have tensors of old batch size! Voc()._flush() to clean buffers
|
| 60 |
+
'''
|
| 61 |
+
self.encode_buffer = None # holds unused (incomplete windows of len < 1920) - we need 1920 to produce 1 token
|
| 62 |
+
if self.downsample.previous is not None:
|
| 63 |
+
self.downsample.previous = None
|
| 64 |
+
if self.upsample.partial is not None:
|
| 65 |
+
self.upsample.partial = None
|
| 66 |
+
for arch in [self.encoder, self.decoder]:
|
| 67 |
+
for _m in arch.model:
|
| 68 |
+
if type(_m) is SEANetResnetBlock:
|
| 69 |
+
for _b in _m.block:
|
| 70 |
+
if type(_b) is BufferConv1d:
|
| 71 |
+
if _b.previous is not None:
|
| 72 |
+
_b.previous = None
|
| 73 |
+
if type(_m) is BufferConv1d:
|
| 74 |
+
if _m.previous is not None:
|
| 75 |
+
_m.previous = None
|
| 76 |
+
if type(_m) is BufferConvTranspose1d:
|
| 77 |
+
if _m.partial is not None:
|
| 78 |
+
_m.partial = None
|
| 79 |
+
|
| 80 |
+
@torch.no_grad()
|
| 81 |
+
def encode(self, x):
|
| 82 |
+
'''24KHz audio to codes
|
| 83 |
+
x : [bs, 1, 24 KHz]
|
| 84 |
+
c : [bs, 8, time] = 1920 audio samples produce 1 time frame (of n_q codebooks)
|
| 85 |
+
'''
|
| 86 |
+
if self.encode_buffer is not None:
|
| 87 |
+
x = torch.cat([self.encode_buffer, x], 2)
|
| 88 |
+
_bs, _1, _len = x.shape
|
| 89 |
+
num_frames = int(_len / 1920)
|
| 90 |
+
leftover = x[:, :, (num_frames+1) * 1920:]
|
| 91 |
+
if leftover.shape[2] > 0:
|
| 92 |
+
self.encode_buffer = leftover
|
| 93 |
+
else:
|
| 94 |
+
self.encode_buffer = None
|
| 95 |
+
torch.cuda.empty_cache()
|
| 96 |
+
if num_frames > 0:
|
| 97 |
+
c = []
|
| 98 |
+
for n in range(num_frames):
|
| 99 |
+
e = self.encoder(x[:, :, n * 1920:(n + 1) * 1920])
|
| 100 |
+
e = self.encoder_transformer(e)
|
| 101 |
+
e = self.downsample(e)
|
| 102 |
+
_c = self.quantizer.encode(e)
|
| 103 |
+
c.append(_c)
|
| 104 |
+
c = torch.cat(c, 2)
|
| 105 |
+
else:
|
| 106 |
+
# num_frames = 0 Early exit -> for x.shape[2]<1920 fill conv buffers but can't output token
|
| 107 |
+
c = torch.empty(_bs, 0, self.n_q)
|
| 108 |
+
return c
|
| 109 |
+
|
| 110 |
+
@torch.no_grad()
|
| 111 |
+
def decode(self, c):
|
| 112 |
+
'''codes to 24kHZ audio
|
| 113 |
+
c: [bs, 8, n_tokens]
|
| 114 |
+
x: [bs, 1, n_tokens * 1920]
|
| 115 |
+
'''
|
| 116 |
+
_hidden = []
|
| 117 |
+
for i in range(c.shape[2]):
|
| 118 |
+
x = self.quantizer.decode(c[:, :, i:i+1])
|
| 119 |
+
x = self.upsample(x)
|
| 120 |
+
x = self.decoder_transformer(x)
|
| 121 |
+
x = self.decoder(x)
|
| 122 |
+
_hidden.append(x)
|
| 123 |
+
return torch.cat(_hidden, 2) # [bs, 1, 24KHz]
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
class SEANetResnetBlock(nn.Module):
|
| 127 |
+
def __init__(
|
| 128 |
+
self,
|
| 129 |
+
dim,
|
| 130 |
+
kernel_sizes=[3, 1],
|
| 131 |
+
):
|
| 132 |
+
super().__init__()
|
| 133 |
+
|
| 134 |
+
block = []
|
| 135 |
+
for i, kernel_size in enumerate(kernel_sizes):
|
| 136 |
+
|
| 137 |
+
block += [
|
| 138 |
+
nn.ELU(),
|
| 139 |
+
BufferConv1d(
|
| 140 |
+
dim if i == 0 else dim // 2,
|
| 141 |
+
dim // 2 if i == 0 else dim,
|
| 142 |
+
kernel_size=kernel_size,
|
| 143 |
+
bias=True,
|
| 144 |
+
),
|
| 145 |
+
]
|
| 146 |
+
|
| 147 |
+
self.block = nn.Sequential(*block)
|
| 148 |
+
|
| 149 |
+
def forward(self, x):
|
| 150 |
+
return x + self.block(x) # BufferConv1d assures atleast 1 kernl exists 0pad or previous
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
class SEANetEncoder(nn.Module):
|
| 154 |
+
def __init__(
|
| 155 |
+
self,
|
| 156 |
+
channels=1, # DOES NOT SUPPORT STEREO
|
| 157 |
+
dimension=512,
|
| 158 |
+
n_filters=64,
|
| 159 |
+
ratios=[8, 6, 5, 4],
|
| 160 |
+
kernel_size=7,
|
| 161 |
+
last_kernel_size=3,
|
| 162 |
+
):
|
| 163 |
+
super().__init__()
|
| 164 |
+
self.ratios = list(reversed(ratios))
|
| 165 |
+
del ratios
|
| 166 |
+
mult = 1 # incr. each of for
|
| 167 |
+
model=[
|
| 168 |
+
BufferConv1d(
|
| 169 |
+
channels,
|
| 170 |
+
mult * n_filters,
|
| 171 |
+
kernel_size,
|
| 172 |
+
bias=True
|
| 173 |
+
)
|
| 174 |
+
]
|
| 175 |
+
for i, ratio in enumerate(self.ratios):
|
| 176 |
+
model += [SEANetResnetBlock(mult * n_filters),
|
| 177 |
+
nn.ELU(),
|
| 178 |
+
BufferConv1d(mult * n_filters,
|
| 179 |
+
mult * n_filters * 2,
|
| 180 |
+
kernel_size=ratio * 2,
|
| 181 |
+
stride=ratio,
|
| 182 |
+
bias=True)]
|
| 183 |
+
mult *= 2
|
| 184 |
+
# ENDFOR
|
| 185 |
+
model += [nn.ELU(),
|
| 186 |
+
BufferConv1d(mult * n_filters,
|
| 187 |
+
dimension,
|
| 188 |
+
last_kernel_size,
|
| 189 |
+
bias=True)]
|
| 190 |
+
self.model = nn.Sequential(*model)
|
| 191 |
+
|
| 192 |
+
def forward(self, x):
|
| 193 |
+
return self.model(x)
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
class SEANetDecoder(nn.Module):
|
| 197 |
+
|
| 198 |
+
def __init__(
|
| 199 |
+
self,
|
| 200 |
+
channels=1,
|
| 201 |
+
dimension=512,
|
| 202 |
+
n_filters=64,
|
| 203 |
+
ratios=[8, 6, 5, 4],
|
| 204 |
+
kernel_size=7,
|
| 205 |
+
last_kernel_size=3):
|
| 206 |
+
|
| 207 |
+
super().__init__()
|
| 208 |
+
mult = int(2 ** len(ratios))
|
| 209 |
+
model = [BufferConv1d(dimension,
|
| 210 |
+
mult * n_filters,
|
| 211 |
+
kernel_size,
|
| 212 |
+
bias=True)]
|
| 213 |
+
#UP
|
| 214 |
+
for i, ratio in enumerate(ratios):
|
| 215 |
+
model += [nn.ELU(),
|
| 216 |
+
BufferConvTranspose1d(mult * n_filters,
|
| 217 |
+
mult * n_filters // 2,
|
| 218 |
+
kernel_size=ratio * 2,
|
| 219 |
+
stride=ratio,
|
| 220 |
+
bias=True),
|
| 221 |
+
SEANetResnetBlock(mult * n_filters // 2)]
|
| 222 |
+
mult //= 2
|
| 223 |
+
# LAST
|
| 224 |
+
model += [
|
| 225 |
+
nn.ELU(),
|
| 226 |
+
BufferConv1d(
|
| 227 |
+
n_filters,
|
| 228 |
+
channels,
|
| 229 |
+
last_kernel_size,
|
| 230 |
+
bias=True
|
| 231 |
+
),
|
| 232 |
+
]
|
| 233 |
+
self.model = nn.Sequential(*model)
|
| 234 |
+
|
| 235 |
+
def forward(self, x):
|
| 236 |
+
return self.model(x)
|
| 237 |
+
|
| 238 |
+
|
| 239 |
+
class BufferConv1d(nn.Conv1d):
|
| 240 |
+
def __init__(self,
|
| 241 |
+
*args,
|
| 242 |
+
**kwargs):
|
| 243 |
+
super().__init__(*args,
|
| 244 |
+
**kwargs)
|
| 245 |
+
self.previous = None
|
| 246 |
+
|
| 247 |
+
def forward(self, x):
|
| 248 |
+
k = self.kernel_size[0]
|
| 249 |
+
|
| 250 |
+
if self.previous is not None:
|
| 251 |
+
|
| 252 |
+
x = torch.cat([self.previous, x], 2)
|
| 253 |
+
|
| 254 |
+
else: # If self.previous is None => Use zero pad
|
| 255 |
+
|
| 256 |
+
if k == 3:
|
| 257 |
+
|
| 258 |
+
p = (2, 0)
|
| 259 |
+
x = F.pad(x, p, mode='replicate', value=0.0) # skip connections SeaNetResBlk
|
| 260 |
+
|
| 261 |
+
elif k == 4: # ConvTrUpsample is the first conv encountered by decode replicate solves pulse
|
| 262 |
+
|
| 263 |
+
p = (3, 0)
|
| 264 |
+
x = F.pad(x, p, mode='replicate', value=0.0)
|
| 265 |
+
|
| 266 |
+
elif k == 7:
|
| 267 |
+
|
| 268 |
+
p = (6, 0)
|
| 269 |
+
x = F.pad(x, p, mode='replicate', value=0.0)
|
| 270 |
+
|
| 271 |
+
elif k == 16:
|
| 272 |
+
|
| 273 |
+
p = (2, 0)
|
| 274 |
+
x = F.pad(x, p, mode='replicate', value=0.0) # THis can be also constant w/o pulse occur
|
| 275 |
+
|
| 276 |
+
num_frames = int( (x.shape[2] - self.kernel_size[0]) / self.stride[0] ) + 1 # +1 is: k starts at left of x and doing (I-k)/s jumps
|
| 277 |
+
offset = num_frames * self.stride[0]
|
| 278 |
+
self.previous = x[..., offset:]
|
| 279 |
+
return super().forward(x)
|
| 280 |
+
|
| 281 |
+
|
| 282 |
+
class BufferConvTranspose1d(nn.ConvTranspose1d):
|
| 283 |
+
# kernel 5 actually has only 1 pixel for input (is scalar replicat. of 1 pix)
|
| 284 |
+
# https://distill.pub/2016/deconv-checkerboard/
|
| 285 |
+
def __init__(self,
|
| 286 |
+
*args,
|
| 287 |
+
**kwargs):
|
| 288 |
+
super().__init__(*args,
|
| 289 |
+
**kwargs)
|
| 290 |
+
self.partial = None
|
| 291 |
+
|
| 292 |
+
def forward(self, x):
|
| 293 |
+
out = super().forward(x)
|
| 294 |
+
OT = out.shape[2]
|
| 295 |
+
invalid_steps = self.kernel_size[0] - self.stride[0]
|
| 296 |
+
if self.partial is not None:
|
| 297 |
+
PT = self.partial.shape[-1]
|
| 298 |
+
if self.bias is not None:
|
| 299 |
+
out[..., :PT] += self.partial - self.bias[:, None]
|
| 300 |
+
else:
|
| 301 |
+
out[..., :PT] += self.partial # for ConvTrUpsample1d
|
| 302 |
+
invalid_steps = self.kernel_size[0] - self.stride[0]
|
| 303 |
+
self.partial = out[..., OT - invalid_steps :]
|
| 304 |
+
out = out[...,:OT - invalid_steps]
|
| 305 |
+
return out
|
| 306 |
+
|
| 307 |
+
|
| 308 |
+
class CodeBook(nn.Module):
|
| 309 |
+
def __init__(self, dim, codebook_size):
|
| 310 |
+
super().__init__()
|
| 311 |
+
self.register_buffer('_e', torch.zeros(codebook_size, dim))
|
| 312 |
+
|
| 313 |
+
def encode(self, x):
|
| 314 |
+
dist = torch.cdist(
|
| 315 |
+
x.transpose(1, 2), # [bs, time, 256]
|
| 316 |
+
self._e[None, :, :] # [1, 2048, 256]
|
| 317 |
+
)
|
| 318 |
+
codes = dist.argmin(2)
|
| 319 |
+
return codes
|
| 320 |
+
|
| 321 |
+
def decode(self, codes):
|
| 322 |
+
quantized = F.embedding(codes, self._e)
|
| 323 |
+
return quantized.transpose(1, 2) # [1, 256, time]
|
| 324 |
+
|
| 325 |
+
|
| 326 |
+
class SplitResidualVectorQuantizer(nn.Module):
|
| 327 |
+
|
| 328 |
+
def __init__(self,
|
| 329 |
+
n_q=None,
|
| 330 |
+
# https://huggingface.co/kyutai/moshiko-pytorch-bf16/blob/main/tokenizer-e351c8d8-checkpoint125.safetensors
|
| 331 |
+
):
|
| 332 |
+
super().__init__()
|
| 333 |
+
self.in_proj_s = torch.nn.Conv1d(512, 256, 1, bias=False)
|
| 334 |
+
self.in_proj_a = torch.nn.Conv1d(512, 256, 1, bias=False)
|
| 335 |
+
self.out_proj_s = torch.nn.Conv1d(256, 512, 1, bias=False) # reused for all 31 aco.
|
| 336 |
+
self.out_proj_a = torch.nn.Conv1d(256, 512, 1, bias=False)
|
| 337 |
+
self.layers = nn.ModuleList([CodeBook(dim=256, codebook_size=2048) for _ in range(18)])
|
| 338 |
+
self._acoustic_books = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 17, 17, 17, 17] #list(range(1, n_q)) # n_q being use - exclude 0 here
|
| 339 |
+
|
| 340 |
+
def encode(self, x):
|
| 341 |
+
indices = self.layers[0].encode(self.in_proj_s(x)) # integers
|
| 342 |
+
all_indices = [ indices[:, None, :], ]
|
| 343 |
+
x = self.in_proj_a(x)
|
| 344 |
+
for _cb in self._acoustic_books:
|
| 345 |
+
indices = self.layers[_cb].encode(x)
|
| 346 |
+
x = x - self.layers[_cb].decode(indices)
|
| 347 |
+
all_indices.append(indices[:, None, :])
|
| 348 |
+
codes = torch.cat(all_indices, 1)
|
| 349 |
+
return codes
|
| 350 |
+
|
| 351 |
+
def decode(self, codes):
|
| 352 |
+
_s = self.layers[0].decode(codes[:, 0, :])
|
| 353 |
+
_a = torch.zeros([1, 1], device=codes.device)
|
| 354 |
+
for i, _cb in enumerate(self._acoustic_books):
|
| 355 |
+
_a = _a + self.layers[_cb].decode(codes[:, i+1, :])
|
| 356 |
+
return self.out_proj_s(_s) + self.out_proj_a(_a) # [bs, 512, time]
|
| 357 |
+
|
| 358 |
+
|
| 359 |
+
class VocAttention(nn.Module):
|
| 360 |
+
|
| 361 |
+
def __init__(self,
|
| 362 |
+
embed_dim):
|
| 363 |
+
|
| 364 |
+
super().__init__()
|
| 365 |
+
self.fused_proj = nn.Parameter(torch.zeros(embed_dim, embed_dim))
|
| 366 |
+
|
| 367 |
+
def forward(self, x):
|
| 368 |
+
'''bypass of streaming training'''
|
| 369 |
+
if x.shape[1] > 1:
|
| 370 |
+
x = x.mean(1, keepdims=True)
|
| 371 |
+
x = torch.matmul(x, self.fused_proj)
|
| 372 |
+
return x # FFN broadcasts to original x.shape[1]
|
| 373 |
+
|
| 374 |
+
|
| 375 |
+
class VocTransformerLayer(nn.Module):
|
| 376 |
+
|
| 377 |
+
def __init__(self, d_model=512, dim_feedforward=2048):
|
| 378 |
+
super().__init__()
|
| 379 |
+
self.self_attn = VocAttention(embed_dim=d_model)
|
| 380 |
+
self.norm1 = nn.LayerNorm(d_model, eps=1e-5)
|
| 381 |
+
self.norm2 = nn.LayerNorm(d_model, eps=1e-5)
|
| 382 |
+
self.linear1 = nn.Linear(d_model, dim_feedforward, bias=False)
|
| 383 |
+
self.linear2 = nn.Linear(dim_feedforward, d_model, bias=False)
|
| 384 |
+
|
| 385 |
+
def forward(self, x):
|
| 386 |
+
x = x + self.self_attn(self.norm1(x))
|
| 387 |
+
return x + self.linear2(F.gelu(self.linear1(self.norm2(x))))
|
| 388 |
+
|
| 389 |
+
|
| 390 |
+
class VocTransformer(nn.Module):
|
| 391 |
+
|
| 392 |
+
def __init__(self,
|
| 393 |
+
n_layers=8):
|
| 394 |
+
|
| 395 |
+
super().__init__()
|
| 396 |
+
self.layers = nn.ModuleList(VocTransformerLayer() for _ in range(n_layers))
|
| 397 |
+
|
| 398 |
+
def forward(self, x):
|
| 399 |
+
x = x.transpose(1, 2)
|
| 400 |
+
for la in self.layers:
|
| 401 |
+
x = la(x)
|
| 402 |
+
return x.transpose(1, 2)
|
| 403 |
+
|
| 404 |
+
device = 'cpu' #'cuda:0'
|
| 405 |
+
model = Voc.from_pretrained('ivao0/voc').to(device)
|
| 406 |
+
true_audio = hf_hub_download(repo_id='ivao0/voc', filename='true.wav')
|
| 407 |
+
x = torch.from_numpy(x[None, None, :]).to(dtype=torch.float, device=device)
|
| 408 |
+
y = model.decode(model.encode(x)) # Notice if len < 1920 audio samples -> codes is torch.empty
|
| 409 |
+
|
| 410 |
+
soundfile.write('reconstruct.wav', y[0, 0, :].cpu().numpy(), 24000)
|
| 411 |
+
|
| 412 |
+
model._flush() # streaming buffers
|
| 413 |
+
y = model.decode(model.encode(x.repeat(6,1,1))) # switch batch siz
|
| 414 |
+
```
|
| 415 |
+
|
config.json
CHANGED
|
@@ -6,102 +6,7 @@
|
|
| 6 |
"add_adapter": false,
|
| 7 |
"apply_spec_augment": true,
|
| 8 |
"architectures": [
|
| 9 |
-
"
|
| 10 |
],
|
| 11 |
-
"attention_dropout": 0.1
|
| 12 |
-
"bos_token_id": 1,
|
| 13 |
-
"classifier_proj_size": 256,
|
| 14 |
-
"codevector_dim": 256,
|
| 15 |
-
"contrastive_logits_temperature": 0.1,
|
| 16 |
-
"conv_bias": false,
|
| 17 |
-
"conv_dim": [
|
| 18 |
-
512,
|
| 19 |
-
512,
|
| 20 |
-
512,
|
| 21 |
-
512,
|
| 22 |
-
512,
|
| 23 |
-
512,
|
| 24 |
-
512
|
| 25 |
-
],
|
| 26 |
-
"conv_kernel": [
|
| 27 |
-
10,
|
| 28 |
-
3,
|
| 29 |
-
3,
|
| 30 |
-
3,
|
| 31 |
-
3,
|
| 32 |
-
2,
|
| 33 |
-
2
|
| 34 |
-
],
|
| 35 |
-
"conv_stride": [
|
| 36 |
-
5,
|
| 37 |
-
2,
|
| 38 |
-
2,
|
| 39 |
-
2,
|
| 40 |
-
2,
|
| 41 |
-
2,
|
| 42 |
-
2
|
| 43 |
-
],
|
| 44 |
-
"ctc_loss_reduction": "sum",
|
| 45 |
-
"ctc_zero_infinity": false,
|
| 46 |
-
"diversity_loss_weight": 0.1,
|
| 47 |
-
"do_stable_layer_norm": false,
|
| 48 |
-
"dtype": "float32",
|
| 49 |
-
"eos_token_id": 2,
|
| 50 |
-
"feat_extract_activation": "gelu",
|
| 51 |
-
"feat_extract_norm": "group",
|
| 52 |
-
"feat_proj_dropout": 0.0,
|
| 53 |
-
"feat_quantizer_dropout": 0.0,
|
| 54 |
-
"final_dropout": 0.1,
|
| 55 |
-
"hidden_act": "gelu",
|
| 56 |
-
"hidden_dropout": 0.1,
|
| 57 |
-
"hidden_size": 768,
|
| 58 |
-
"initializer_range": 0.02,
|
| 59 |
-
"intermediate_size": 3072,
|
| 60 |
-
"layer_norm_eps": 1e-05,
|
| 61 |
-
"layerdrop": 0.1,
|
| 62 |
-
"mask_feature_length": 10,
|
| 63 |
-
"mask_feature_min_masks": 0,
|
| 64 |
-
"mask_feature_prob": 0.0,
|
| 65 |
-
"mask_time_length": 10,
|
| 66 |
-
"mask_time_min_masks": 2,
|
| 67 |
-
"mask_time_prob": 0.05,
|
| 68 |
-
"model_type": "wav2vec2",
|
| 69 |
-
"num_adapter_layers": 3,
|
| 70 |
-
"num_attention_heads": 12,
|
| 71 |
-
"num_codevector_groups": 2,
|
| 72 |
-
"num_codevectors_per_group": 320,
|
| 73 |
-
"num_conv_pos_embedding_groups": 16,
|
| 74 |
-
"num_conv_pos_embeddings": 128,
|
| 75 |
-
"num_feat_extract_layers": 7,
|
| 76 |
-
"num_hidden_layers": 12,
|
| 77 |
-
"num_negatives": 100,
|
| 78 |
-
"output_hidden_size": 768,
|
| 79 |
-
"pad_token_id": 0,
|
| 80 |
-
"proj_codevector_dim": 256,
|
| 81 |
-
"sample_rate": 24000,
|
| 82 |
-
"tdnn_dilation": [
|
| 83 |
-
1,
|
| 84 |
-
2,
|
| 85 |
-
3,
|
| 86 |
-
1,
|
| 87 |
-
1
|
| 88 |
-
],
|
| 89 |
-
"tdnn_dim": [
|
| 90 |
-
512,
|
| 91 |
-
512,
|
| 92 |
-
512,
|
| 93 |
-
512,
|
| 94 |
-
1500
|
| 95 |
-
],
|
| 96 |
-
"tdnn_kernel": [
|
| 97 |
-
5,
|
| 98 |
-
3,
|
| 99 |
-
3,
|
| 100 |
-
1,
|
| 101 |
-
1
|
| 102 |
-
],
|
| 103 |
-
"transformers_version": "4.57.0",
|
| 104 |
-
"use_weighted_layer_sum": false,
|
| 105 |
-
"vocab_size": 32,
|
| 106 |
-
"xvector_output_dim": 512
|
| 107 |
}
|
|
|
|
| 6 |
"add_adapter": false,
|
| 7 |
"apply_spec_augment": true,
|
| 8 |
"architectures": [
|
| 9 |
+
"AvoS"
|
| 10 |
],
|
| 11 |
+
"attention_dropout": 0.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
}
|
true.wav
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8e2099b05b8a61a17060c2d4a26f1e859b94ec63685a20a00a5e3991ec72a189
|
| 3 |
+
size 3840044
|
video.mp4
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b0b7400ccc97cfef03bfc7b239130e9ced382eb1cd9dfa900ef723d0634742c9
|
| 3 |
+
size 1686059
|